Asymptotics of the Solution of a Wave Equation with Radially Symmetric Velocity on the Simplest Decorated Graph with Arbitrary Boundary Conditions at the Gluing Point
Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 442-453.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Cauchy problem for a wave equation with variable velocity on the simplest decorated graph obtained by gluing a ray to $\mathbb R^3$, with initial conditions localized on the ray. For the wave operator to be self-adjoint, we impose certain boundary conditions at the gluing point. This paper describes the asymptotic expansion of the solution of the problem under consideration for arbitrary boundary conditions at the gluing point under the assumption that the velocity on $\mathbb R^3$ is radially symmetric. Also we study the distribution of the energy of the wave as the small parameter tends to zero, which depends on the boundary conditions.
Keywords: decorated graphs, wave equation, asymptotics.
@article{MZM_2020_107_3_a9,
     author = {A. V. Tsvetkova and A. I. Shafarevich},
     title = {Asymptotics of the {Solution} of a {Wave} {Equation} with {Radially} {Symmetric} {Velocity} on the {Simplest} {Decorated} {Graph} with {Arbitrary} {Boundary} {Conditions} at the {Gluing} {Point}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {442--453},
     publisher = {mathdoc},
     volume = {107},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a9/}
}
TY  - JOUR
AU  - A. V. Tsvetkova
AU  - A. I. Shafarevich
TI  - Asymptotics of the Solution of a Wave Equation with Radially Symmetric Velocity on the Simplest Decorated Graph with Arbitrary Boundary Conditions at the Gluing Point
JO  - Matematičeskie zametki
PY  - 2020
SP  - 442
EP  - 453
VL  - 107
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a9/
LA  - ru
ID  - MZM_2020_107_3_a9
ER  - 
%0 Journal Article
%A A. V. Tsvetkova
%A A. I. Shafarevich
%T Asymptotics of the Solution of a Wave Equation with Radially Symmetric Velocity on the Simplest Decorated Graph with Arbitrary Boundary Conditions at the Gluing Point
%J Matematičeskie zametki
%D 2020
%P 442-453
%V 107
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a9/
%G ru
%F MZM_2020_107_3_a9
A. V. Tsvetkova; A. I. Shafarevich. Asymptotics of the Solution of a Wave Equation with Radially Symmetric Velocity on the Simplest Decorated Graph with Arbitrary Boundary Conditions at the Gluing Point. Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 442-453. http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a9/

[1] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | MR | Zbl

[2] V. L. Chernyshev, A. A. Tolchennikov, “Svoistva raspredeleniya gaussovykh paketov na prostranstvennoi seti”, Nauka i obrazovanie, 10 (2011), 1–10

[3] A. I. Allilueva, A. I. Shafarevich, “Localized asymptotic solutions of the wave equation with variable velocity on the simplest graphs”, Russ. J. Math. Phys., 24:3 (2017), 279–289 | DOI | MR

[4] V. L. Chernyshev, A. I. Shafarevich, “Statistics of gaussian packets on metric and decorated graphs”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372:2007 (2013), 20130145 | DOI | MR

[5] A. I. Shafarevich, A. V. Tsvetkova, “Localized asymptotic solution of the wave equation with radially symmetric velocity on the simplest decorated graph”, Russ. J. Math. Phys., 25:3 (2018), 333–344 | DOI | MR

[6] A. I. Shafarevich, A. V. Tsvetkova, “Cauchy problem for the wave equation on the simplest decorated graph with initial conditions localized on a surface”, Russ. J. Math. Phys., 26:2 (2019), 227–236 | DOI | MR

[7] B. S. Pavlov, M. D. Faddeev, “Model svobodnykh elektronov i zadacha rasseyaniya”, TMF, 55:2 (1983), 257–268 | MR

[8] J. Bruning, V. Geyler, “Scattering on compact manifolds with infinitely thin horns”, J. Math. Phys., 44:2 (2003), 371–405 | DOI | MR