Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_107_3_a9, author = {A. V. Tsvetkova and A. I. Shafarevich}, title = {Asymptotics of the {Solution} of a {Wave} {Equation} with {Radially} {Symmetric} {Velocity} on the {Simplest} {Decorated} {Graph} with {Arbitrary} {Boundary} {Conditions} at the {Gluing} {Point}}, journal = {Matemati\v{c}eskie zametki}, pages = {442--453}, publisher = {mathdoc}, volume = {107}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a9/} }
TY - JOUR AU - A. V. Tsvetkova AU - A. I. Shafarevich TI - Asymptotics of the Solution of a Wave Equation with Radially Symmetric Velocity on the Simplest Decorated Graph with Arbitrary Boundary Conditions at the Gluing Point JO - Matematičeskie zametki PY - 2020 SP - 442 EP - 453 VL - 107 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a9/ LA - ru ID - MZM_2020_107_3_a9 ER -
%0 Journal Article %A A. V. Tsvetkova %A A. I. Shafarevich %T Asymptotics of the Solution of a Wave Equation with Radially Symmetric Velocity on the Simplest Decorated Graph with Arbitrary Boundary Conditions at the Gluing Point %J Matematičeskie zametki %D 2020 %P 442-453 %V 107 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a9/ %G ru %F MZM_2020_107_3_a9
A. V. Tsvetkova; A. I. Shafarevich. Asymptotics of the Solution of a Wave Equation with Radially Symmetric Velocity on the Simplest Decorated Graph with Arbitrary Boundary Conditions at the Gluing Point. Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 442-453. http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a9/
[1] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | MR | Zbl
[2] V. L. Chernyshev, A. A. Tolchennikov, “Svoistva raspredeleniya gaussovykh paketov na prostranstvennoi seti”, Nauka i obrazovanie, 10 (2011), 1–10
[3] A. I. Allilueva, A. I. Shafarevich, “Localized asymptotic solutions of the wave equation with variable velocity on the simplest graphs”, Russ. J. Math. Phys., 24:3 (2017), 279–289 | DOI | MR
[4] V. L. Chernyshev, A. I. Shafarevich, “Statistics of gaussian packets on metric and decorated graphs”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372:2007 (2013), 20130145 | DOI | MR
[5] A. I. Shafarevich, A. V. Tsvetkova, “Localized asymptotic solution of the wave equation with radially symmetric velocity on the simplest decorated graph”, Russ. J. Math. Phys., 25:3 (2018), 333–344 | DOI | MR
[6] A. I. Shafarevich, A. V. Tsvetkova, “Cauchy problem for the wave equation on the simplest decorated graph with initial conditions localized on a surface”, Russ. J. Math. Phys., 26:2 (2019), 227–236 | DOI | MR
[7] B. S. Pavlov, M. D. Faddeev, “Model svobodnykh elektronov i zadacha rasseyaniya”, TMF, 55:2 (1983), 257–268 | MR
[8] J. Bruning, V. Geyler, “Scattering on compact manifolds with infinitely thin horns”, J. Math. Phys., 44:2 (2003), 371–405 | DOI | MR