Local Solvability and Global Unsolvability of a Model of Ion-Sound Waves in a Plasma
Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 426-441.

Voir la notice de l'article provenant de la source Math-Net.Ru

An initial-boundary value problem for the multidimensional equation of ion-sound waves in a plasma is considered. Its time-local solvability in the classical sense in Hölder spaces is proved. This is a development of results in our previous papers, where the local solvability of one-dimensional analogs of the equation under consideration was established and, in the general case (regardless of the dimension of the space), sufficient conditions for the blow-up of the solution were obtained.
Keywords: nonlinear initial-boundary value problem, exponential nonlinearity.
Mots-clés : Sobolev-type equations
@article{MZM_2020_107_3_a8,
     author = {A. A. Panin and G. I. Shlyapugin},
     title = {Local {Solvability} and {Global} {Unsolvability} of a {Model} of {Ion-Sound} {Waves} in a {Plasma}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {426--441},
     publisher = {mathdoc},
     volume = {107},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a8/}
}
TY  - JOUR
AU  - A. A. Panin
AU  - G. I. Shlyapugin
TI  - Local Solvability and Global Unsolvability of a Model of Ion-Sound Waves in a Plasma
JO  - Matematičeskie zametki
PY  - 2020
SP  - 426
EP  - 441
VL  - 107
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a8/
LA  - ru
ID  - MZM_2020_107_3_a8
ER  - 
%0 Journal Article
%A A. A. Panin
%A G. I. Shlyapugin
%T Local Solvability and Global Unsolvability of a Model of Ion-Sound Waves in a Plasma
%J Matematičeskie zametki
%D 2020
%P 426-441
%V 107
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a8/
%G ru
%F MZM_2020_107_3_a8
A. A. Panin; G. I. Shlyapugin. Local Solvability and Global Unsolvability of a Model of Ion-Sound Waves in a Plasma. Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 426-441. http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a8/

[1] S. A. Gabov, Novye zadachi matematicheskoi teorii voln, Nauka, M., 1998

[2] F. Kako, N. Yajima, “Interaction of ion-acoustic solitons in two-dimensional space”, J. Phys. Soc. Japan, 49:5 (1980), 2063–2071 | DOI | MR

[3] E. Infeld, Dzh. Roulands, Nelineinye volny, solitony i khaos, Fizmatlit, M., 2006 | MR | Zbl

[4] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, E. V. Yushkov, “O razrushenii reshenii odnogo polnogo nelineinogo uravneniya ionno-zvukovykh voln v plazme s nekoertsitivnymi nelineinostyami”, Izv. RAN. Ser. matem., 82:2 (2018), 43–78 | DOI

[5] M. O. Korpusov, A. A. Panin, “O neprodolzhaemom reshenii i razrushenii resheniya odnomernogo uravneniya ionno-zvukovykh voln v plazme”, Matem. zametki, 102:3 (2017), 383–395 | DOI | MR

[6] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, G. I. Shlyapugin, “On the blow-up phenomena for a one-dimensional equation of ion-sound waves in a plasma: analytical and numerical investigation”, Math. Methods Appl. Sci., 41:8 (2018), 2906–2929 | DOI | MR

[7] M. O. Korpusov, D. V. Lukyanenko, A. D. Nekrasov, “Analytic-numerical investigation of combustion in a nonlinear medium”, Comput. Math. Math. Phys., 58:9 (2018), 1499–1509 | DOI | MR

[8] M. O. Korpusov, D. V. Lukyanenko, “Instantaneous blow-up versus local solvability for one problem of propagation of nonlinear waves in semiconductors”, J. Math. Anal. Appl., 459:1 (2018), 159–181 | DOI | MR

[9] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, E. V. Yushkov, “Blow-up for one Sobolev problem: theoretical approach and numerical analysis”, J. Math. Anal. Appl., 442:2 (2016), 451–468 | DOI | MR

[10] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, E. V. Yushkov, “Blow-up phenomena in the model of a space charge stratification in semiconductors: analytical and numerical analysis”, Math. Methods Appl. Sci., 40:7 (2017), 2336–2346 | DOI | MR

[11] D. V. Lukyanenko, A. A. Panin, “Razrushenie resheniya uravneniya stratifikatsii ob'emnogo zaryada v poluprovodnikakh: chislennyi analiz pri svedenii iskhodnogo uravneniya k differentsialno-algebraicheskoi sisteme”, Vych. met. programmirovanie, 17:4 (2016), 437–446

[12] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[13] L. A. Lyusternik, V. I. Sobolev, Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR | Zbl

[14] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972 | MR | Zbl

[15] M. O. Korpusov, A. G. Sveshnikov, Nelineinyi funktsionalnyi analiz i matematicheskoe modelirovanie v fizike. Metody issledovaniya nelineinykh operatorov, Krasand, M., 2011

[16] A. Kartan, Differentsialnoe ischislenie. Differentsialnye formy, Mir, M., 1971 | MR | Zbl