Local Solvability and Global Unsolvability of a Model of Ion-Sound Waves in a Plasma
Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 426-441
Voir la notice de l'article provenant de la source Math-Net.Ru
An initial-boundary value problem for the multidimensional equation of ion-sound waves in a plasma is considered. Its time-local solvability in the classical sense in Hölder spaces is proved. This is a development of results in our previous papers, where the local solvability of one-dimensional analogs of the equation under consideration was established and, in the general case (regardless of the dimension of the space), sufficient conditions for the blow-up of the solution were obtained.
Keywords:
nonlinear initial-boundary value problem, exponential nonlinearity.
Mots-clés : Sobolev-type equations
Mots-clés : Sobolev-type equations
@article{MZM_2020_107_3_a8,
author = {A. A. Panin and G. I. Shlyapugin},
title = {Local {Solvability} and {Global} {Unsolvability} of a {Model} of {Ion-Sound} {Waves} in a {Plasma}},
journal = {Matemati\v{c}eskie zametki},
pages = {426--441},
publisher = {mathdoc},
volume = {107},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a8/}
}
TY - JOUR AU - A. A. Panin AU - G. I. Shlyapugin TI - Local Solvability and Global Unsolvability of a Model of Ion-Sound Waves in a Plasma JO - Matematičeskie zametki PY - 2020 SP - 426 EP - 441 VL - 107 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a8/ LA - ru ID - MZM_2020_107_3_a8 ER -
A. A. Panin; G. I. Shlyapugin. Local Solvability and Global Unsolvability of a Model of Ion-Sound Waves in a Plasma. Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 426-441. http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a8/