Parabolic Equations with Large Parameter. Inverse Problems
Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 412-425.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an abstract parabolic equation with initial condition and multidimensional parabolic initial-boundary value problem with absolute terms rapidly oscillating in time, inverse problems of finding these absolute terms from some information about the partial asymptotics of the solutions of the original problems are stated and solved. In this case, the absolute terms are the products of two factors, one of which is described by a rapidly oscillating function (i.e., depends on fast time), while the second term may depend on ordinary time but does not depend on fast time. The following three cases are considered: where, in this pair, only one of the factors is known and where only the mean value of the rapidly oscillating factor is known.
Keywords: abstract parabolic equation, multidimensional parabolic initial boundary-value problem, rapidly oscillating absolute term, asymptotics, inverse problem.
@article{MZM_2020_107_3_a7,
     author = {V. B. Levenshtam},
     title = {Parabolic {Equations} with {Large} {Parameter.} {Inverse} {Problems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {412--425},
     publisher = {mathdoc},
     volume = {107},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a7/}
}
TY  - JOUR
AU  - V. B. Levenshtam
TI  - Parabolic Equations with Large Parameter. Inverse Problems
JO  - Matematičeskie zametki
PY  - 2020
SP  - 412
EP  - 425
VL  - 107
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a7/
LA  - ru
ID  - MZM_2020_107_3_a7
ER  - 
%0 Journal Article
%A V. B. Levenshtam
%T Parabolic Equations with Large Parameter. Inverse Problems
%J Matematičeskie zametki
%D 2020
%P 412-425
%V 107
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a7/
%G ru
%F MZM_2020_107_3_a7
V. B. Levenshtam. Parabolic Equations with Large Parameter. Inverse Problems. Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 412-425. http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a7/

[1] M. M. Lavrentev, V. G. Romanov, S. P. Shishatskii, Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR | Zbl

[2] V. G. Romanov, Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR | Zbl

[3] A. M. Denisov, Vvedenie v teoriyu obratnykh zadach, Izd-vo Mosk. un-ta, M., 1994

[4] S. I. Kabanikhin, Obratnye i nekorrektnye zadachi, SNI, Novosibirsk, 2008

[5] M. M. Lavretev, K. G. Reznitskaya, V. G. Yakhno, Odnomernye obratnye zadachi matematicheskoi fiziki, Nauka, Novosibirsk, 1982 | MR | Zbl

[6] Yu. E. Anikonov, Multidimensional Inverse and Ill-Posed Problems for Diffentional Equations, VSP, Utrecht, 1995 | MR

[7] Yu. E. Anikonov, Formulas in Inverse and Ill-Posed Problems, VSP, Utrecht, 1997 | MR

[8] Yu. E. Anikonov, B. A. Bubhov, G. N. Erokhin, Inverse and Ill-Posed Source Problems, VSP, Utrecht, 1997 | MR

[9] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York, 1999 | MR

[10] Yu. E. Anikonov, Inverse Problems for Kinetic and Other Evolution Equations, VSP, Utrecht, 2001

[11] Yu. Ya. Belov, Inverse Problems for Partial Differential Equation, VSP, Utrecht, 2002 | MR

[12] M. M. Lavrentiev, A. V. Avdeev, M. M. Lavrentiev Jr., V. I. Priimenko, Inverse Problems of Mathematical Physics, VSP, Utrecht, 2003 | MR

[13] A. G. Megrabov, Forward and Inverse Problems for Hyperbolic, Elliptic and Mixed Type Equations, VSP, Utrecht, 2003 | MR

[14] M. Ivanchov, Inverse Problems for Equations of Parabolic Type, VNTL Publishers, L'viv, 2003 | MR

[15] A. D. Iskenderov, R. G. Tagiev, “Obratnaya zadacha ob opredelenii pravykh chastei evolyutsionnykh uravnenii v banakhovom prostranstve”, Voprosy prikladnoi matematiki i kibernetiki, Nauch. tr. Azerbaidzhanskogo un-ta, 1, 1979, 51–56 | Zbl

[16] D. G. Orlovskii, “Obratnaya zadacha Koshi dlya evolyutsionnykh uravnenii v banakhovom prostranstve”, Analiz matematicheskikh modelei fizicheskikh protsessov, Energoatomizdat, M., 1988, 84–90

[17] A. I. Prilepko, I. V. Tikhonov, “Vosstanovlenie neodnorodnogo slagaemogo v abstraktnom evolyutsionnom uravnenii”, Izv. RAN. Ser. matem., 58:2 (1994), 167–188 | MR | Zbl

[18] P. V. Babich, V. B. Levenshtam, “Vosstanovlenie bystro ostsilliruyuschego svobodnogo chlena v mnogomernom giperbolicheskom uravnenii”, Matem. zametki, 104:4 (2018), 505–515 | DOI

[19] P. V. Babich, V. B. Levenshtam, “Direct and inverse asymptotic problems with high-frequency terms”, Asymptot. Anal., 2016, no. 97, 329–336 | DOI | MR

[20] P. V. Babich, V. B. Levenshtam, S. P. Prika, “Vosstanovlenie bystro ostsilliruyuschego istochnika v uravnenii teploprovodnosti po asimptotike resheniya”, Zh. vychisl. matem. i matem. fiz., 57:12 (2017), 1955–1965 | DOI

[21] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, P. E. Sobolevskii, Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR | Zbl

[22] M. Z. Solomyak, “Primenenie teorii polugrupp k issledovaniyu differentsialnykh uravnenii v prostranstvakh Banakha”, Dokl. AN SSSR, 122:5 (1958), 767–769 | MR

[23] P. E. Sobolevskii, “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. MMO, 10, GIFML, M., 1961, 297–350 | MR | Zbl

[24] A. M. Denisov, “Asimptotika reshenii obratnykh zadach dlya giperbolicheskogo uravneniya s malym parametrom pri starshei proizvodnoi”, Zh. vychisl. matem. i matem. fiz., 53:5 (2013), 744–752 | DOI | MR

[25] I. B. Simonenko, “Obosnovanie metoda osredneniya dlya abstraktnykh parabolicheskikh uravnenii”, Matem. sb., 81 (123):1 (1970), 53–61 | MR | Zbl

[26] I. B. Simonenko, “Obosnovanie metoda osredneniya dlya zadachi konvektsii v pole bystro ostsilliruyuschikh sil i dlya drugikh parabolicheskikh uravnenii”, Matem. sb., 87 (129):2 (1972), 236–253 | MR | Zbl