The Zero Set of a Real Analytic Function
Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 473-475.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: measure-zero sets, real-analytic functions, implicit function theorem.
@article{MZM_2020_107_3_a13,
     author = {B. S. Mityagin},
     title = {The {Zero} {Set} of a {Real} {Analytic} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {473--475},
     publisher = {mathdoc},
     volume = {107},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a13/}
}
TY  - JOUR
AU  - B. S. Mityagin
TI  - The Zero Set of a Real Analytic Function
JO  - Matematičeskie zametki
PY  - 2020
SP  - 473
EP  - 475
VL  - 107
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a13/
LA  - ru
ID  - MZM_2020_107_3_a13
ER  - 
%0 Journal Article
%A B. S. Mityagin
%T The Zero Set of a Real Analytic Function
%J Matematičeskie zametki
%D 2020
%P 473-475
%V 107
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a13/
%G ru
%F MZM_2020_107_3_a13
B. S. Mityagin. The Zero Set of a Real Analytic Function. Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 473-475. http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a13/

[1] N. V. Dang, Complex Powers of Analytic Functions and Meromorphic Renormalization in QFT, 2015, arXiv: math-ph/1503.00995

[2] P. Kuchment, Bull. Amer. Math. Soc. (N.S.), 53:3 (2016), 343–414 ; arXiv: math-ph/1510.00971 | MR

[3] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill Book Co., New York, 1964 | MR

[4] G. E. Shilov, Matematicheskii analiz. Spetsialnyi kurs, Nauka, M., 1961 | MR