Kolmogorov Widths of Weighted Sobolev Classes on an Interval with Conditions on the Zeroth and First Derivatives
Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 470-472.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Kolmogorov width, intersection of weighted Sobolev classes.
@article{MZM_2020_107_3_a12,
     author = {A. A. Vasil'eva},
     title = {Kolmogorov {Widths} of {Weighted} {Sobolev} {Classes} on an {Interval} with {Conditions} on the {Zeroth} and {First} {Derivatives}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {470--472},
     publisher = {mathdoc},
     volume = {107},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a12/}
}
TY  - JOUR
AU  - A. A. Vasil'eva
TI  - Kolmogorov Widths of Weighted Sobolev Classes on an Interval with Conditions on the Zeroth and First Derivatives
JO  - Matematičeskie zametki
PY  - 2020
SP  - 470
EP  - 472
VL  - 107
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a12/
LA  - ru
ID  - MZM_2020_107_3_a12
ER  - 
%0 Journal Article
%A A. A. Vasil'eva
%T Kolmogorov Widths of Weighted Sobolev Classes on an Interval with Conditions on the Zeroth and First Derivatives
%J Matematičeskie zametki
%D 2020
%P 470-472
%V 107
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a12/
%G ru
%F MZM_2020_107_3_a12
A. A. Vasil'eva. Kolmogorov Widths of Weighted Sobolev Classes on an Interval with Conditions on the Zeroth and First Derivatives. Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 470-472. http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a12/

[1] R. Oinarov, J. London Math. Soc. (2), 48:1 (1993), 103–116 | DOI | MR

[2] V. D. Stepanov, E. P. Ushakova, Funktsionalnye prostranstva, garmonicheskii analiz, differentsialnye uravneniya, Tr. MIAN, 232, Nauka, MAIK «Nauka/Interperiodika», M., 2001, 298–317 | MR | Zbl

[3] R. Oinarov, Izv. RAN. Ser. matem., 78:4 (2014), 207–223 | DOI | MR | Zbl

[4] V. D. Stepanov, E. P. Ushakova, Matem. zametki, 105:1 (2019), 108–122 | DOI

[5] E. N. Lomakina, V. D. Stepanov, Matem. tr., 9:1 (2006), 52–100 | MR

[6] D. E. Edmunds, J. Lang, Math. Nachr., 297:7 (2006), 727–742 | DOI | MR

[7] V. N. Konovalov, D. Leviatan, Anal. Math., 28:4 (2002), 251–278 | DOI | MR

[8] J. Lang, J. Approx. Theory, 121:1 (2003), 61–70 | DOI | MR

[9] M. A. Lifshits, W. Linde, Approximation and Entropy Numbers of Volterra Operators with Application to Brownian Motion, Mem. Amer. Math. Soc., 157, no. 745, Amer. Math. Soc., Providence, RI | MR

[10] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR | Zbl

[11] I. V. Boikov, Zh. vychisl. matem. i matem. fiz., 38:1 (1998), 25–33 | MR | Zbl

[12] K. Mynbaev, M. Otelbaev, Vesovye funktsionalnye prostranstva i spektr differentsialnykh operatorov, Nauka, M., 1988 | MR

[13] V. M. Tikhomirov, Analiz – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 14, VINITI, M., 1987, 103–260 | MR | Zbl