Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_107_3_a12, author = {A. A. Vasil'eva}, title = {Kolmogorov {Widths} of {Weighted} {Sobolev} {Classes} on an {Interval} with {Conditions} on the {Zeroth} and {First} {Derivatives}}, journal = {Matemati\v{c}eskie zametki}, pages = {470--472}, publisher = {mathdoc}, volume = {107}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a12/} }
TY - JOUR AU - A. A. Vasil'eva TI - Kolmogorov Widths of Weighted Sobolev Classes on an Interval with Conditions on the Zeroth and First Derivatives JO - Matematičeskie zametki PY - 2020 SP - 470 EP - 472 VL - 107 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a12/ LA - ru ID - MZM_2020_107_3_a12 ER -
%0 Journal Article %A A. A. Vasil'eva %T Kolmogorov Widths of Weighted Sobolev Classes on an Interval with Conditions on the Zeroth and First Derivatives %J Matematičeskie zametki %D 2020 %P 470-472 %V 107 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a12/ %G ru %F MZM_2020_107_3_a12
A. A. Vasil'eva. Kolmogorov Widths of Weighted Sobolev Classes on an Interval with Conditions on the Zeroth and First Derivatives. Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 470-472. http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a12/
[1] R. Oinarov, J. London Math. Soc. (2), 48:1 (1993), 103–116 | DOI | MR
[2] V. D. Stepanov, E. P. Ushakova, Funktsionalnye prostranstva, garmonicheskii analiz, differentsialnye uravneniya, Tr. MIAN, 232, Nauka, MAIK «Nauka/Interperiodika», M., 2001, 298–317 | MR | Zbl
[3] R. Oinarov, Izv. RAN. Ser. matem., 78:4 (2014), 207–223 | DOI | MR | Zbl
[4] V. D. Stepanov, E. P. Ushakova, Matem. zametki, 105:1 (2019), 108–122 | DOI
[5] E. N. Lomakina, V. D. Stepanov, Matem. tr., 9:1 (2006), 52–100 | MR
[6] D. E. Edmunds, J. Lang, Math. Nachr., 297:7 (2006), 727–742 | DOI | MR
[7] V. N. Konovalov, D. Leviatan, Anal. Math., 28:4 (2002), 251–278 | DOI | MR
[8] J. Lang, J. Approx. Theory, 121:1 (2003), 61–70 | DOI | MR
[9] M. A. Lifshits, W. Linde, Approximation and Entropy Numbers of Volterra Operators with Application to Brownian Motion, Mem. Amer. Math. Soc., 157, no. 745, Amer. Math. Soc., Providence, RI | MR
[10] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR | Zbl
[11] I. V. Boikov, Zh. vychisl. matem. i matem. fiz., 38:1 (1998), 25–33 | MR | Zbl
[12] K. Mynbaev, M. Otelbaev, Vesovye funktsionalnye prostranstva i spektr differentsialnykh operatorov, Nauka, M., 1988 | MR
[13] V. M. Tikhomirov, Analiz – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 14, VINITI, M., 1987, 103–260 | MR | Zbl