Seminorms Associated with Subadditive Weights on $C^*$-Algebras
Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 341-350

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\varphi$ be a subadditive weight on a $C^*$-algebra $\mathscr A$, and let $\mathfrak M_\varphi^+$ be the set of all elements $x$ in $\mathscr A^+$ with $\varphi(x)+\infty$. A seminorm ${\|\cdot\|}_\varphi$ is introduced on the lineal $\mathfrak M_\varphi^{\mathrm{sa}}=\operatorname{lin}_{\mathbb R}\mathfrak M_\varphi^+$, and a sufficient condition for the seminorm to be a norm is given. Let $I$ be the unit of the algebra $\mathscr A$, and let $\varphi(I)=1$. Then, for every element $x$ of $\mathscr A^{\mathrm{sa}}$, the limit $\rho_\varphi (x)=\lim_{t\to 0+}(\varphi(I+tx)-1)/t$ exists and is finite. Properties of $\rho_\varphi$ are investigated, and examples of subadditive weights on $C^*$-algebras are considered. On the basis of Lozinskii's 1958 results, specific subadditive weights on $\mathbb M_n(\mathbb C)$ are considered. An estimate for the difference of Cayley transforms of Hermitian elements of a von Neumann algebra is obtained.
Keywords: Hilbert space, bounded linear operator, Cayley transform, projection, von Neumann algebra, $C^*$-algebra, subadditive weight, seminorm
Mots-clés : matrix norm.
@article{MZM_2020_107_3_a1,
     author = {A. M. Bikchentaev},
     title = {Seminorms {Associated} with {Subadditive} {Weights} on $C^*${-Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {341--350},
     publisher = {mathdoc},
     volume = {107},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a1/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Seminorms Associated with Subadditive Weights on $C^*$-Algebras
JO  - Matematičeskie zametki
PY  - 2020
SP  - 341
EP  - 350
VL  - 107
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a1/
LA  - ru
ID  - MZM_2020_107_3_a1
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Seminorms Associated with Subadditive Weights on $C^*$-Algebras
%J Matematičeskie zametki
%D 2020
%P 341-350
%V 107
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a1/
%G ru
%F MZM_2020_107_3_a1
A. M. Bikchentaev. Seminorms Associated with Subadditive Weights on $C^*$-Algebras. Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 341-350. http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a1/