Seminorms Associated with Subadditive Weights on $C^*$-Algebras
Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 341-350.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\varphi$ be a subadditive weight on a $C^*$-algebra $\mathscr A$, and let $\mathfrak M_\varphi^+$ be the set of all elements $x$ in $\mathscr A^+$ with $\varphi(x)+\infty$. A seminorm ${\|\cdot\|}_\varphi$ is introduced on the lineal $\mathfrak M_\varphi^{\mathrm{sa}}=\operatorname{lin}_{\mathbb R}\mathfrak M_\varphi^+$, and a sufficient condition for the seminorm to be a norm is given. Let $I$ be the unit of the algebra $\mathscr A$, and let $\varphi(I)=1$. Then, for every element $x$ of $\mathscr A^{\mathrm{sa}}$, the limit $\rho_\varphi (x)=\lim_{t\to 0+}(\varphi(I+tx)-1)/t$ exists and is finite. Properties of $\rho_\varphi$ are investigated, and examples of subadditive weights on $C^*$-algebras are considered. On the basis of Lozinskii's 1958 results, specific subadditive weights on $\mathbb M_n(\mathbb C)$ are considered. An estimate for the difference of Cayley transforms of Hermitian elements of a von Neumann algebra is obtained.
Keywords: Hilbert space, bounded linear operator, Cayley transform, projection, von Neumann algebra, $C^*$-algebra, subadditive weight, seminorm
Mots-clés : matrix norm.
@article{MZM_2020_107_3_a1,
     author = {A. M. Bikchentaev},
     title = {Seminorms {Associated} with {Subadditive} {Weights} on $C^*${-Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {341--350},
     publisher = {mathdoc},
     volume = {107},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a1/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Seminorms Associated with Subadditive Weights on $C^*$-Algebras
JO  - Matematičeskie zametki
PY  - 2020
SP  - 341
EP  - 350
VL  - 107
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a1/
LA  - ru
ID  - MZM_2020_107_3_a1
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Seminorms Associated with Subadditive Weights on $C^*$-Algebras
%J Matematičeskie zametki
%D 2020
%P 341-350
%V 107
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a1/
%G ru
%F MZM_2020_107_3_a1
A. M. Bikchentaev. Seminorms Associated with Subadditive Weights on $C^*$-Algebras. Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 341-350. http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a1/

[1] I. Segal, “A non-commutative extension of abstract integration”, Ann. of Math. (2), 57:3 (1953), 401–457 | DOI | MR

[2] A. N. Sherstnev, Metody bilineinykh form v nekommutativnoi teorii mery i integrala, Fizmatlit, M., 2008

[3] U. Haagerup, “Normal weights on $W^*$-algebras”, J. Funct. Anal., 19:3 (1975), 302–317 | DOI | MR

[4] F. Combes, “Poids sur une $C^*$-algèbre”, J. Math. Pures Appl. (9), 47:1 (1968), 57–100 | MR

[5] A. M. Bikchentaev, “O zadache Khaagerupa o subadditivnykh vesakh na $W^*$-algebrakh”, Izv. vuzov. Matem., 2011, no. 10, 94–98 | MR

[6] A. M. Bikchentaev, “O zadache Khaagerupa o subadditivnykh vesakh na $W^*$-algebrakh. II”, Izv. vuzov. Matem., 2013, no. 12, 72–76

[7] A. A. Lebedev, “O monotonnykh sublineinykh dominiruemykh funktsionalakh na prostranstve izmerimykh funktsii”, Sib. matem. zhurn., 33:6 (1992), 94–105

[8] A. A. Lebedev, “Dezintegrirovanie vozrastayuschikh dominiruemykh sublineinykh funktsionalov na prostranstve izmerimykh funktsii”, Sib. matem. zhurn., 34:6 (1993), 130–149 | MR | Zbl

[9] A. M. Bikchentaev, “Idealnye $F$-normy na $C^*$-algebrakh”, Izv. vuzov. Matem., 2015, no. 5, 69–74 | MR

[10] A. M. Bikchentaev, “Idealnye $F$-normy na $C^*$-algebrakh. II”, Izv. vuzov. Matem., 2019, no. 3, 90–96 | DOI

[11] Dzh. Merfi, $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997 | MR | Zbl

[12] A. M. Bikchentaev, “Operator blochnogo proektirovaniya v normirovannykh idealnykh prostranstvakh izmerimykh operatorov”, Izv. vuzov. Matem., 2012, no. 2, 86–91 | MR

[13] C. A. Akemann, J. Anderson, G. K. Pedersen, “Triangle inequalities in operator algebras”, Linear Multilinear Algebra, 11:2 (1982), 167–178 | DOI | MR

[14] J. von Neumann, “Über Adjungierte Funktionaloperatoren”, Ann. of Math. (2), 33:2 (1932), 294–310 | DOI | MR

[15] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR | Zbl

[16] A. M. Bikchentaev, “O minimalnosti topologii skhodimosti po mere na konechnykh algebrakh fon Neimana”, Matem. zametki, 75:3 (2004), 342–349 | DOI | MR | Zbl

[17] A. M. Bikchentaev, O. E. Tikhonov, “Characterization of the trace by monotonicity inequalities”, Linear Algebra Appl., 422:1 (2007), 274–278 | DOI | MR

[18] S. M. Lozinskii, “Otsenka pogreshnosti chislennogo integrirovaniya obyknovennykh differentsialnykh uravnenii. I”, Izv. vuzov. Matem., 1958, no. 5, 52–90 | MR | Zbl

[19] B. F. Bylov, R. E. Vinograd, D. M. Grobman, V. V. Nemytskii, Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, Nauka, M., 1966 | MR

[20] A. I. Perov, I. D. Kostrub, O. I. Kleschina, E. E. Dikarev, “Absolyutnaya logarifmicheskaya norma”, Izv. vuzov. Matem., 2018, no. 4, 70–85

[21] A. I. Perov, I. D. Kostrub, “O spektralnoi abstsisse i logarifmicheskoi norme”, Matem. zametki, 101:4 (2017), 562–575 | DOI | MR