The Extended Legendre Transform and Related Variational Principles
Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 323-340.

Voir la notice de l'article provenant de la source Math-Net.Ru

Variational principles for functionals on the space $C(X)$ of continuous functions that can be written as a representation of a functional in the form of the Legendre transform of the dual functional are considered. The formula of the Legendre transform determines a functional on wider sets of functions, and this functional is called the extended Legendre transform. Functionals that can be represented in the form of the extended Legendre transform are described. Applications to the problem of finding the spectral radius of functional operators are given.
Mots-clés : Legendre transform
Keywords: variational principle, spectral radius.
@article{MZM_2020_107_3_a0,
     author = {A. B. Antonevich and E. U. Leonova},
     title = {The {Extended} {Legendre} {Transform} and {Related} {Variational} {Principles}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--340},
     publisher = {mathdoc},
     volume = {107},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a0/}
}
TY  - JOUR
AU  - A. B. Antonevich
AU  - E. U. Leonova
TI  - The Extended Legendre Transform and Related Variational Principles
JO  - Matematičeskie zametki
PY  - 2020
SP  - 323
EP  - 340
VL  - 107
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a0/
LA  - ru
ID  - MZM_2020_107_3_a0
ER  - 
%0 Journal Article
%A A. B. Antonevich
%A E. U. Leonova
%T The Extended Legendre Transform and Related Variational Principles
%J Matematičeskie zametki
%D 2020
%P 323-340
%V 107
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a0/
%G ru
%F MZM_2020_107_3_a0
A. B. Antonevich; E. U. Leonova. The Extended Legendre Transform and Related Variational Principles. Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 323-340. http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a0/

[1] G. G. Magaril-Ilyaev, V. M. Tikhomirov, Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2003 | MR

[2] I. Ekland, R. Temam, Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR | Zbl

[3] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999 | MR | Zbl

[4] A. B. Antonevich, “On Extension of the Legendre transform”, Geometric Methods in Physics, Proceedings of the XXVIII Workshop on Geometric Methods in Physics (Bialowieza, Poland, 28 June – 4 July 2009), Amer. Inst. of Phys., Melville, New York, 2009, 1–6

[5] A. B. Antonevich, Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Universitetskoe, Minsk, 1988 | MR | Zbl

[6] A. Antonevich, A. Lebedev, Functional differential equations. I. $C^*$-theory, Longman Sci. and Tech., Harlow, 1994 | MR

[7] H. Kesten, “Symmetric random walks on groups”, Trans. Amer. Math. Soc., 92 (1959), 336–354 | DOI | MR

[8] R. I. Grigorchuk, “Simmetricheskie sluchainye bluzhdaniya na diskretnykh gruppakh”, Mnogokomponentnye sluchainye sistemy, Nauka, M., 1978, 132–152 | MR

[9] Yu. D. Latushkin, A. M. Stepin, “Operator vzveshennogo sdviga na topologicheskoi markovskoi tsepi”, Funkts. analiz i ego pril., 22:4 (1988), 86–87 | MR | Zbl

[10] A. B. Antonevich, V. I. Bakhtin, A. V. Lebedev, “On $t$-entropy and variational principle for the spectral radius of transfer and weighted shift operators”, Ergodic Theory Dynam. Systems, 31:4 (2011), 995–1042 | DOI | MR

[11] A. B. Antonevich, V. I. Bakhtin, A. V. Lebedev, “A road to the spectral radius of transfer operators”, Dynamical Systems and Group Actions, Contemp. Math., 567, Amer. Math. Soc., Providence, RI, 2012, 17–51 | DOI | MR

[12] A. B. Antonevich, K. Zaikovskii, “Variatsionnye printsipy dlya spektralnogo radiusa funktsionalnykh operatorov”, Matem. sb., 197:5 (2006), 3–50 | DOI | MR | Zbl

[13] U. Ostashewska, K. Zajkowski, “Legendre–Fenchel transform of the spectral exponent of polynomias of weighted composition operators”, Positivity, 14:3 (2010), 373–381 | DOI | MR

[14] U. Ostashewska, K. Zajkowski, “Variational principle for the the spectral exponent of polynomias of weighted composition operators”, J. Math. Anal. Appl., 361:1 (2010), 246–251 | DOI | MR

[15] U. Ostashewska, K. Zajkowski, “Legendre–Fenchel transform of the spectral exponent of analytic functions of weighted composition operators”, J. Convex Analysis, 18:2 (2011), 367–377 | MR

[16] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[17] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[18] A. N. Glaz, “Operator irratsionalnogo povorota, spektr kotorogo yavlyaetsya koltsom”, Izv. Gomelskogo. gos. un-ta. Ser. Estestv. nauki, 84:3 (2014), 40–45

[19] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[20] A. B. Antonevich, “Ob izmeneniyakh spektra pri malykh vozmuscheniyakh operatora”, Vestnik BGU. Ser. 1, 1976, no. 3, 60–62 | MR

[21] E. Yu. Leonova, “Mnozhestva edinstvennosti prodolzheniya polozhitelnogo lineinogo ogranichennogo funktsionala v prostranstve $C(X)$”, Vestnik BGU. Ser. 1, 2012, no. 2, 121–127

[22] E. Yu. Leonova, “Multiplikativnye polunepreryvnye sverkhu funktsionaly na polugruppe neotritsatelnykh funktsii”, Vestnik BGU. Ser. 1, 2015, no. 3, 103–110

[23] E. Yu. Leonova, “Kriterii nepreryvnosti srednego geometricheskogo na polugruppe neotritsatelnykh funktsii”, Vestn. Grodnenskogo gos. un-ta im. Yanki Kupaly. Ser. 2. Matem. Fiz. Inform., 6:1 (2016), 55–63

[24] A. B. Antonevich, E. Yu. Leonova, “Rasshirennoe preobrazovanie Lezhandra na $C(X)$ i ego prilozheniya”, Tr. In-ta matem. NAN Belarusi, 24:2 (2016), 3–13 | MR