A Morse Energy Function for Topological Flows with Finite Hyperbolic Chain Recurrent Sets
Matematičeskie zametki, Tome 107 (2020) no. 2, pp. 276-285.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Lyapunov function for a flow on a manifold is a continuous function which decreases along orbits outside the chain recurrent set and is constant on each chain component. By virtue of C. Conley's results, such a function exists for any flow generated by a continuous vector field; the very fact of its existence is known as the fundamental theorem of dynamical systems. If the set of critical points of a Lyapunov function coincides with the chain recurrent set of the flow, then this function is called an energy function. The paper considers topological flows with a finite hyperbolic (in the topological sense) chain recurrent set on closed surfaces. It is proved that any such flow has a (continuous) Morse energy function. The work is a conceptual continuation of that of S. Smale and K. Meyer, who proved the existence of a smooth Morse energy function for any gradient flow on a manifold.
Keywords: Lyapunov function, energy function, chain recurrent set.
@article{MZM_2020_107_2_a9,
     author = {O. V. Pochinka and S. Kh. Zinina},
     title = {A {Morse} {Energy} {Function} for {Topological} {Flows} with {Finite} {Hyperbolic} {Chain} {Recurrent} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {276--285},
     publisher = {mathdoc},
     volume = {107},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a9/}
}
TY  - JOUR
AU  - O. V. Pochinka
AU  - S. Kh. Zinina
TI  - A Morse Energy Function for Topological Flows with Finite Hyperbolic Chain Recurrent Sets
JO  - Matematičeskie zametki
PY  - 2020
SP  - 276
EP  - 285
VL  - 107
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a9/
LA  - ru
ID  - MZM_2020_107_2_a9
ER  - 
%0 Journal Article
%A O. V. Pochinka
%A S. Kh. Zinina
%T A Morse Energy Function for Topological Flows with Finite Hyperbolic Chain Recurrent Sets
%J Matematičeskie zametki
%D 2020
%P 276-285
%V 107
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a9/
%G ru
%F MZM_2020_107_2_a9
O. V. Pochinka; S. Kh. Zinina. A Morse Energy Function for Topological Flows with Finite Hyperbolic Chain Recurrent Sets. Matematičeskie zametki, Tome 107 (2020) no. 2, pp. 276-285. http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a9/

[1] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Reg. Conf. Ser. in Math., 38, Amer. Math. Soc., Providence, RI, 1978 | MR | Zbl

[2] F. W. Wilson Jr., “Smoothing derivatives of functions and applications”, Trans. Amer. Math. Soc., 139 (1969), 413–428 | DOI | MR | Zbl

[3] S. Smale, “On gradient dynamical systems”, Ann. of Math. (2), 74 (1961), 199–206 | DOI | MR | Zbl

[4] K. R. Meyer, “Energy functions for Morse Smale systems”, Amer. J. Math., 90 (1968), 1031–1040 | DOI | MR | Zbl

[5] V. Z. Grines, O. V. Pochinka, Vvedenie v topologicheskuyu klassifikatsiyu kaskadov na mnogoobraziyakh razmernosti dva i tri, Izd-vo “RKhD”, M.–Izhevsk, 2011

[6] M. Morse, “Topologically non-degenerate functions on a compact $n$-manifold $M$”, J. Analyse Math., 7 (1959), 189–208 | DOI | MR | Zbl