Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_107_2_a9, author = {O. V. Pochinka and S. Kh. Zinina}, title = {A {Morse} {Energy} {Function} for {Topological} {Flows} with {Finite} {Hyperbolic} {Chain} {Recurrent} {Sets}}, journal = {Matemati\v{c}eskie zametki}, pages = {276--285}, publisher = {mathdoc}, volume = {107}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a9/} }
TY - JOUR AU - O. V. Pochinka AU - S. Kh. Zinina TI - A Morse Energy Function for Topological Flows with Finite Hyperbolic Chain Recurrent Sets JO - Matematičeskie zametki PY - 2020 SP - 276 EP - 285 VL - 107 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a9/ LA - ru ID - MZM_2020_107_2_a9 ER -
O. V. Pochinka; S. Kh. Zinina. A Morse Energy Function for Topological Flows with Finite Hyperbolic Chain Recurrent Sets. Matematičeskie zametki, Tome 107 (2020) no. 2, pp. 276-285. http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a9/
[1] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Reg. Conf. Ser. in Math., 38, Amer. Math. Soc., Providence, RI, 1978 | MR | Zbl
[2] F. W. Wilson Jr., “Smoothing derivatives of functions and applications”, Trans. Amer. Math. Soc., 139 (1969), 413–428 | DOI | MR | Zbl
[3] S. Smale, “On gradient dynamical systems”, Ann. of Math. (2), 74 (1961), 199–206 | DOI | MR | Zbl
[4] K. R. Meyer, “Energy functions for Morse Smale systems”, Amer. J. Math., 90 (1968), 1031–1040 | DOI | MR | Zbl
[5] V. Z. Grines, O. V. Pochinka, Vvedenie v topologicheskuyu klassifikatsiyu kaskadov na mnogoobraziyakh razmernosti dva i tri, Izd-vo “RKhD”, M.–Izhevsk, 2011
[6] M. Morse, “Topologically non-degenerate functions on a compact $n$-manifold $M$”, J. Analyse Math., 7 (1959), 189–208 | DOI | MR | Zbl