Remarks on the Supersolvability of a Group with Prime Indices of Some Subgroups
Matematičeskie zametki, Tome 107 (2020) no. 2, pp. 246-255.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, a characterization is obtained for a finite group such that, for each prime $p$, every maximal subgroup of any Sylow $p$-subgroup of this group is contained in a subgroup of index $p$; in particular, such groups are supersolvable. It is proved that a group $G$ is supersolvable if and only if, for every prime $p\in\pi(G)$, there is a supersolvable subgroup of index $p$. New properties of groups containing two supersolvable subgroups of different prime indices are established.
Keywords: finite group, maximal subgroup, index of a subgroup.
Mots-clés : supersolvable group
@article{MZM_2020_107_2_a7,
     author = {V. S. Monakhov and A. A. Trofimuk},
     title = {Remarks on the {Supersolvability} of a {Group} with {Prime} {Indices} of {Some} {Subgroups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {246--255},
     publisher = {mathdoc},
     volume = {107},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a7/}
}
TY  - JOUR
AU  - V. S. Monakhov
AU  - A. A. Trofimuk
TI  - Remarks on the Supersolvability of a Group with Prime Indices of Some Subgroups
JO  - Matematičeskie zametki
PY  - 2020
SP  - 246
EP  - 255
VL  - 107
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a7/
LA  - ru
ID  - MZM_2020_107_2_a7
ER  - 
%0 Journal Article
%A V. S. Monakhov
%A A. A. Trofimuk
%T Remarks on the Supersolvability of a Group with Prime Indices of Some Subgroups
%J Matematičeskie zametki
%D 2020
%P 246-255
%V 107
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a7/
%G ru
%F MZM_2020_107_2_a7
V. S. Monakhov; A. A. Trofimuk. Remarks on the Supersolvability of a Group with Prime Indices of Some Subgroups. Matematičeskie zametki, Tome 107 (2020) no. 2, pp. 246-255. http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a7/

[1] B. Huppert, Endliche Gruppen. I, Springer-Verlag, Berlin, 1967 | MR | Zbl

[2] B. Huppert, “Normalteiler und maximale Untergruppen endlicher Gruppen”, Math. Z., 60 (1954), 409–434 | MR | Zbl

[3] K. Doerk, “Minimal nicht überauflösbare, endliche Gruppen”, Math. Z., 91 (1966), 198–205 | DOI | MR | Zbl

[4] K. Wang, “Finite group with two supersolvable subgroups of coprime indices”, Northeast. Math. J., 17:2 (2001), 221–225 | MR | Zbl

[5] V. S. Monakhov, A. A. Trofimuk, “Finite groups with two supersoluble subgroups”, J. Group Theory, 22:2 (2019), 297–312 | DOI | MR | Zbl

[6] L. S. Kazarin, Yu. A. Korzyukov, “Konechnye razreshimye gruppy so sverkhrazreshimymi maksimalnymi podgruppami”, Izv. vuzov. Matem., 1980, no. 5, 22–27 | MR | Zbl

[7] V. Monakhov, A. Trofimuk, “Finite groups with subnormal non-cyclic subgroups”, J. Group Theory, 17:5 (2014), 889–895 | DOI | MR | Zbl

[8] Y. Berkovich, L. Kazarin, “Indices of elements and normal structure of finite groups”, J. Algebra, 283:3 (2005), 564–583 | DOI | MR | Zbl

[9] V. S. Monakhov, V. N. Tyutyanov, “O konechnykh gruppakh s nekotorymi podgruppami prostykh indeksov”, Sib. matem. zhurn., 48:4 (2007), 833–836 | MR | Zbl

[10] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006

[11] V. S. Monakhov, I. K. Chirik, “O $p$-sverkhrazreshimosti konechnoi faktorizuemoi gruppy s normalnymi somnozhitelyami”, Tr. IMM UrO RAN, 21, no. 3, 2015, 256–267 | MR

[12] D. K. Friesen, “Products of normal supersolvable subgroups”, Proc. Amer. Math. Soc., 30:1 (1971), 46–48 | DOI | MR | Zbl

[13] H. G. Bray, W.Ė. Deskins, D. Johnson, J. F. Humphreys, B. M. Puttaswamaiah, P. Venzke G. L. Walls, Between Nilpotent and Solvable, Polygonal Publ., Passaic, NJ, 1982 | MR | Zbl

[14] M. Asaad, A. Shaalan, “On the supersolvability of finite groups”, Arch. Math. (Basel), 53:4 (1989), 318–326 | DOI | MR | Zbl

[15] W. Guo, K. P. Shum, A. Skiba, “Criterions of supersolubility for products of supersoluble groups”, Publ. Math. Debrecen, 68:3-4 (2006), 433–449 | MR | Zbl