Remarks on the Supersolvability of a Group with Prime Indices of Some Subgroups
Matematičeskie zametki, Tome 107 (2020) no. 2, pp. 246-255
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, a characterization is obtained for a finite group such that, for each prime $p$, every maximal subgroup of any Sylow $p$-subgroup of this group is contained in a subgroup of index $p$; in particular, such groups are supersolvable. It is proved that a group $G$ is supersolvable if and only if, for every prime $p\in\pi(G)$, there is a supersolvable subgroup of index $p$. New properties of groups containing two supersolvable subgroups of different prime indices are established.
Keywords:
finite group, maximal subgroup, index of a subgroup.
Mots-clés : supersolvable group
Mots-clés : supersolvable group
@article{MZM_2020_107_2_a7,
author = {V. S. Monakhov and A. A. Trofimuk},
title = {Remarks on the {Supersolvability} of a {Group} with {Prime} {Indices} of {Some} {Subgroups}},
journal = {Matemati\v{c}eskie zametki},
pages = {246--255},
publisher = {mathdoc},
volume = {107},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a7/}
}
TY - JOUR AU - V. S. Monakhov AU - A. A. Trofimuk TI - Remarks on the Supersolvability of a Group with Prime Indices of Some Subgroups JO - Matematičeskie zametki PY - 2020 SP - 246 EP - 255 VL - 107 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a7/ LA - ru ID - MZM_2020_107_2_a7 ER -
V. S. Monakhov; A. A. Trofimuk. Remarks on the Supersolvability of a Group with Prime Indices of Some Subgroups. Matematičeskie zametki, Tome 107 (2020) no. 2, pp. 246-255. http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a7/