Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_107_2_a5, author = {A. M. Meirmanov and O. A. Galtseva and V. E. Seldemirov}, title = {On the {Global-in-Time} {Existence} of a {Generalized} {Solution} to a {Free-Boundary} {Problem}}, journal = {Matemati\v{c}eskie zametki}, pages = {229--240}, publisher = {mathdoc}, volume = {107}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a5/} }
TY - JOUR AU - A. M. Meirmanov AU - O. A. Galtseva AU - V. E. Seldemirov TI - On the Global-in-Time Existence of a Generalized Solution to a Free-Boundary Problem JO - Matematičeskie zametki PY - 2020 SP - 229 EP - 240 VL - 107 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a5/ LA - ru ID - MZM_2020_107_2_a5 ER -
%0 Journal Article %A A. M. Meirmanov %A O. A. Galtseva %A V. E. Seldemirov %T On the Global-in-Time Existence of a Generalized Solution to a Free-Boundary Problem %J Matematičeskie zametki %D 2020 %P 229-240 %V 107 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a5/ %G ru %F MZM_2020_107_2_a5
A. M. Meirmanov; O. A. Galtseva; V. E. Seldemirov. On the Global-in-Time Existence of a Generalized Solution to a Free-Boundary Problem. Matematičeskie zametki, Tome 107 (2020) no. 2, pp. 229-240. http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a5/
[1] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR | Zbl
[2] A. M. Meirmanov, Zadacha Stefana, Nauka. Sib. otd., Novosibirsk, 1986 | MR
[3] A. M. Meirmanov, O. V. Galtsev, R. N. Zimin, Free Boundaries in Rock Mechanics, De Gruyter, Berlin, 2017 | MR | Zbl
[4] V. A. Solonnikov, “Ob odnoi nachalno-kraevoi zadache dlya sistemy Stoksa, voznikayuschei pri izuchenii zadachi so svobodnoi granitsei”, Kraevye zadachi matematicheskoi fiziki. 14, Tr. MIAN SSSR, 188, Nauka. Leningradskoe otd., L., 1990, 150–188 | MR | Zbl
[5] V. A. Solonnikov, “Razreshimost zadachi ob evolyutsii vyazkoi neszhimaemoi zhidkosti, ogranichennoi svobodnoi poverkhnostyu, na konechnom intervale vremeni”, Algebra i analiz, 3:1 (1991), 222–257 | MR | Zbl
[6] V. A. Solonnikov, “Lectures on evolution free boundary problems: classical solutions”, Mathematical Aspects of Evolving Interfaces, Lecture Notes in Math., 1812, Springer, Berlin, 2003, 123–175 | DOI | MR | Zbl
[7] A. Friedman, “A free boundary problem for coupled system of elliptic, hyperbolic and Stokes equations modeling tumor growth”, Interfaces Free Bound., 8:2 (2006), 247–261 | DOI | MR | Zbl
[8] L. V. Ovsyannikov, N. I. Makarenko, V. I. Nalimov, V. Yu. Lyapidevskii, P. I. Plotnikov, I. V. Sturova, V. I. Bukreev, V. A. Vladimirov, Nelineinye problemy teorii poverkhnostnykh i vnutrennikh voln, Nauka. Sib. otd., Novosibirsk, 1985 | MR
[9] V. N. Monakhov, Kraevye zadachi so svobodnymi granitsami dlya ellipticheskikh sistem uravnenii, Nauka. Sib. otd., Novosibirsk, 1977 | MR
[10] M. A. Lavrentev, B. V. Shabat, Problemy gidrodinamiki i ikh matematicheskie modeli, Nauka, M., 1973 | MR
[11] J. Schauder, “Der Fixpunktsatz in Funktionalraümen”, Studia Math., 2 (1930), 171–180 | DOI | Zbl