On the Global-in-Time Existence of a Generalized Solution to a Free-Boundary Problem
Matematičeskie zametki, Tome 107 (2020) no. 2, pp. 229-240.

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem with free (unknown) boundary for a one-dimensional diffusion-convection equation is considered. The unknown boundary is found from an additional condition on the free boundary. By the extension of the variables, the problem in an unknown domain is reduced to an initial boundary-value problem for a strictly parabolic equation with unknown coefficients in a known domain. These coefficients are found from an additional boundary condition that enables the construction of a nonlinear operator whose fixed points determine a solution of the original problem.
Keywords: free-boundary problems, fixed-point method, a priori estimates.
Mots-clés : diffusion-convection equation
@article{MZM_2020_107_2_a5,
     author = {A. M. Meirmanov and O. A. Galtseva and V. E. Seldemirov},
     title = {On the {Global-in-Time} {Existence} of a {Generalized} {Solution} to a {Free-Boundary} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {229--240},
     publisher = {mathdoc},
     volume = {107},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a5/}
}
TY  - JOUR
AU  - A. M. Meirmanov
AU  - O. A. Galtseva
AU  - V. E. Seldemirov
TI  - On the Global-in-Time Existence of a Generalized Solution to a Free-Boundary Problem
JO  - Matematičeskie zametki
PY  - 2020
SP  - 229
EP  - 240
VL  - 107
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a5/
LA  - ru
ID  - MZM_2020_107_2_a5
ER  - 
%0 Journal Article
%A A. M. Meirmanov
%A O. A. Galtseva
%A V. E. Seldemirov
%T On the Global-in-Time Existence of a Generalized Solution to a Free-Boundary Problem
%J Matematičeskie zametki
%D 2020
%P 229-240
%V 107
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a5/
%G ru
%F MZM_2020_107_2_a5
A. M. Meirmanov; O. A. Galtseva; V. E. Seldemirov. On the Global-in-Time Existence of a Generalized Solution to a Free-Boundary Problem. Matematičeskie zametki, Tome 107 (2020) no. 2, pp. 229-240. http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a5/

[1] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR | Zbl

[2] A. M. Meirmanov, Zadacha Stefana, Nauka. Sib. otd., Novosibirsk, 1986 | MR

[3] A. M. Meirmanov, O. V. Galtsev, R. N. Zimin, Free Boundaries in Rock Mechanics, De Gruyter, Berlin, 2017 | MR | Zbl

[4] V. A. Solonnikov, “Ob odnoi nachalno-kraevoi zadache dlya sistemy Stoksa, voznikayuschei pri izuchenii zadachi so svobodnoi granitsei”, Kraevye zadachi matematicheskoi fiziki. 14, Tr. MIAN SSSR, 188, Nauka. Leningradskoe otd., L., 1990, 150–188 | MR | Zbl

[5] V. A. Solonnikov, “Razreshimost zadachi ob evolyutsii vyazkoi neszhimaemoi zhidkosti, ogranichennoi svobodnoi poverkhnostyu, na konechnom intervale vremeni”, Algebra i analiz, 3:1 (1991), 222–257 | MR | Zbl

[6] V. A. Solonnikov, “Lectures on evolution free boundary problems: classical solutions”, Mathematical Aspects of Evolving Interfaces, Lecture Notes in Math., 1812, Springer, Berlin, 2003, 123–175 | DOI | MR | Zbl

[7] A. Friedman, “A free boundary problem for coupled system of elliptic, hyperbolic and Stokes equations modeling tumor growth”, Interfaces Free Bound., 8:2 (2006), 247–261 | DOI | MR | Zbl

[8] L. V. Ovsyannikov, N. I. Makarenko, V. I. Nalimov, V. Yu. Lyapidevskii, P. I. Plotnikov, I. V. Sturova, V. I. Bukreev, V. A. Vladimirov, Nelineinye problemy teorii poverkhnostnykh i vnutrennikh voln, Nauka. Sib. otd., Novosibirsk, 1985 | MR

[9] V. N. Monakhov, Kraevye zadachi so svobodnymi granitsami dlya ellipticheskikh sistem uravnenii, Nauka. Sib. otd., Novosibirsk, 1977 | MR

[10] M. A. Lavrentev, B. V. Shabat, Problemy gidrodinamiki i ikh matematicheskie modeli, Nauka, M., 1973 | MR

[11] J. Schauder, “Der Fixpunktsatz in Funktionalraümen”, Studia Math., 2 (1930), 171–180 | DOI | Zbl