Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_107_2_a2, author = {S. S. Volosivets and M. A. Kuznetsova}, title = {Generalized {Absolute} {Convergence} of {Single} and {Double} {Series} in {Multiplicative} {Systems}}, journal = {Matemati\v{c}eskie zametki}, pages = {195--209}, publisher = {mathdoc}, volume = {107}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a2/} }
TY - JOUR AU - S. S. Volosivets AU - M. A. Kuznetsova TI - Generalized Absolute Convergence of Single and Double Series in Multiplicative Systems JO - Matematičeskie zametki PY - 2020 SP - 195 EP - 209 VL - 107 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a2/ LA - ru ID - MZM_2020_107_2_a2 ER -
S. S. Volosivets; M. A. Kuznetsova. Generalized Absolute Convergence of Single and Double Series in Multiplicative Systems. Matematičeskie zametki, Tome 107 (2020) no. 2, pp. 195-209. http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a2/
[1] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl
[2] F. Weisz, Martingale Hardy Spaces and Their Application in Fourier Analysis, Lecture Notes in Math., 1568, Springer-Verlag, Berlin, 1994 | DOI | MR
[3] L. Gogoladze, R. Meskhia, “On the absolute convergence of trigonometric Fourier series”, Proc. A. Razmadze Math. Inst., 141 (2006), 29–40 | MR | Zbl
[4] P. L. Ulyanov, “O ryadakh po sisteme Khaara s monotonnymi koeffitsientami”, Izv. AN SSSR. Ser. matem., 28:4 (1964), 925–950 | MR | Zbl
[5] F. Móricz, A. Veres, “Absolute convergence of multiple Fourier series revisited”, Anal. Math., 34:2 (2008), 145–162 | DOI | MR | Zbl
[6] B. I. Golubov, S. S. Volosivets, “Generalized absolute convergence of single and double Fourier series with respect to multiplicative systems”, Anal. Math., 38:2 (2012), 105–122 | DOI | MR | Zbl
[7] D. Waterman, “On the summability of Fourier series of functions of $\Lambda$-bounded variation”, Studia Math., 55:1 (1976), 87–95 | DOI | MR | Zbl
[8] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nul-mernykh gruppakh, Elm, Baku, 1981 | MR
[9] I. A. Skhirtladze, “Ob absolyutnoi skhodimosti ryadov Fure–Uolsha”, Soobsch. AN Gruz. SSR, 64:2 (1971), 274–276
[10] I. A. Skhirtladze, “Ob absolyutnoi skhodimosti i summiruemosti prostykh i kratnykh ryadov Fure–Uolsha”, Soobsch. AN Gruz. SSR, 69:1 (1973), 17–20
[11] O. Szász, “Fourier series and mean moduli of continuity”, Trans. Amer. Math. Soc., 42:3 (1937), 366–395 | DOI | MR
[12] J. Tateoka, “Absolute convergence of double Walsh-Fourier series”, Acta Sci. Math. (Szeged), 72:1-2 (2006), 101–115 | MR | Zbl
[13] S. S. Volosivets, B. I. Golubov, “Absolyutnaya skhodimost kratnykh ryadov po multiplikativnym sistemam”, Anal. Math., 36:2 (2010), 155–172 | DOI | Zbl
[14] F. Moricz, “Absolute convergence of Walsh–Fourier series and related results”, Anal. Math., 36:4 (2010), 275–286 | DOI | MR | Zbl
[15] F. Móricz, A. Veres, “Absolute convergence of double Walsh–Fourier series and related results”, Acta Math. Hungar., 131:1–2 (2011), 122–137 | DOI | MR | Zbl
[16] A. Zigmund, Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR
[17] C. W. Onneweer, “Absolute convergence of Fourier series on certain groups”, Duke Math. J., 39:4 (1972), 599–609 | DOI | MR | Zbl
[18] S. S. Volosivets, “Skhodimost ryadov Fure po multiplikativnym sistemam i $p$-fluktuatsionnyi modul nepreryvnosti”, Sib. matem. zhurn., 47:2 (2006), 241–258 | MR | Zbl
[19] N. K. Bari, S. B. Stechkin, “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, GITTL, M., 1956, 483–522 | MR | Zbl