Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_107_2_a0, author = {V. A. Vatutin and E. E. D'yakonova}, title = {The {Survival} {Probability} for a {Class} of {Multitype} {Subcritical} {Branching} {Processes} in {Random} {Environment}}, journal = {Matemati\v{c}eskie zametki}, pages = {163--177}, publisher = {mathdoc}, volume = {107}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a0/} }
TY - JOUR AU - V. A. Vatutin AU - E. E. D'yakonova TI - The Survival Probability for a Class of Multitype Subcritical Branching Processes in Random Environment JO - Matematičeskie zametki PY - 2020 SP - 163 EP - 177 VL - 107 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a0/ LA - ru ID - MZM_2020_107_2_a0 ER -
%0 Journal Article %A V. A. Vatutin %A E. E. D'yakonova %T The Survival Probability for a Class of Multitype Subcritical Branching Processes in Random Environment %J Matematičeskie zametki %D 2020 %P 163-177 %V 107 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a0/ %G ru %F MZM_2020_107_2_a0
V. A. Vatutin; E. E. D'yakonova. The Survival Probability for a Class of Multitype Subcritical Branching Processes in Random Environment. Matematičeskie zametki, Tome 107 (2020) no. 2, pp. 163-177. http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a0/
[1] V. A. Vatutin, A. M. Zubkov, “Branching processes. II”, J. Soviet Math., 67:6 (1993), 3407–3485 | DOI | MR | Zbl
[2] G. Kersting, V. Vatutin, Discrete Time Branching Processes in Random Environment, John Wiley Sons, London, 2017 | Zbl
[3] E. E. Dyakonova, “Dokriticheskii razlozhimyi vetvyaschiisya protsess v smeshannoi srede”, Diskret. matem., 30:2 (2018), 14–26 | DOI | Zbl
[4] E. E. Dyakonova, “Predelnaya teorema dlya mnogotipnogo kriticheskogo vetvyaschegosya protsessa, evolyutsioniruyuschego v sluchainoi srede”, Diskret. matem., 27:1 (2015), 44–58 | DOI | MR | Zbl
[5] E. E. Dyakonova, “Mnogotipnye dokriticheskie vetvyaschiesya protsessy v sluchainoi srede”, Vetvyaschiesya protsessy, sluchainye bluzhdaniya i smezhnye voprosy, Tr. MIAN, 282, MAIK «Nauka/Interperiodika», M., 2013, 87–97 | DOI | MR
[6] V. Vatutin, E. Dyakonova, P. Jagers, S. Sagitov, “A decomposable branching process in a Markovian environment”, Int. J. Stoch. Anal., 2012 (2012), Article ID 694285 | MR | Zbl
[7] E. E. Dyakonova, “Mnogotipnye vetvyaschiesya protsessy, evolyutsioniruyuschie v markovskoi srede”, Diskret. matem., 24:3 (2012), 130–151 | DOI | MR | Zbl
[8] E. E. Dyakonova, “Mnogotipnye vetvyaschiesya protsessy Galtona–Vatsona v markovskoi sluchainoi srede”, Teoriya veroyatn. i ee primen., 56:3 (2011), 592–601 | DOI | MR
[9] V. A. Vatutin, E. E. Dyakonova, “Asimptoticheskie svoistva mnogotipnykh kriticheskikh vetvyaschikhsya protsessov, evolyutsioniruyuschikh v sluchainoi srede”, Diskret. matem., 22:2 (2010), 22–40 | DOI | MR | Zbl
[10] E. Dyakonova, “On subcritical multi-type branching process in random environment”, Fifth Colloquium on Mathematics and Computer Science, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2008, 397–404 | MR | Zbl
[11] E. E. Dyakonova, “Kriticheskie mnogotipnye vetvyaschiesya protsessy v sluchainoi srede”, Diskret. matem., 19:4 (2007), 23–41 | DOI | MR | Zbl
[12] V. Vatutin, Q. Liu, “Branching processes evolving in asynchronous environments”, Proceedings 59-th ISI World Statistics Congress, 25–30 August 2013, Hong Kong, International Statistical Institute, The Hague, The Netherlands, 2013, 1744–1749 http://2013.isiproceedings.org/Files/STS033-P3-S.pdf
[13] E. Le Page, M. Peigné, C. Pham, “The survival probability of a critical multi-type branching process in i.i.d. random environment”, Ann. Probab., 46:5 (2018), 2946–2972 | DOI | MR | Zbl
[14] V. A. Vatutin, E. E. Dyakonova, “Mnogotipnye vetvyaschiesya protsessy v sluchainoi srede: veroyatnost nevyrozhdeniya v kriticheskom sluchae”, Teoriya veroyatn. i ee primen., 62:4 (2017), 634–653 | DOI | Zbl
[15] V. Vatutin, V. Wachtel, “Multi-type subcritical branching processes in a random environment”, Adv. in Appl. Probab., 50:A (2018), 281–289 | DOI | MR
[16] T. D. C. Pham, “Conditional limit theorems for products of positive random matrices”, ALEA Lat. Am. J. Probab. Math. Stat., 15:1 (2018), 67–100 | DOI | MR | Zbl
[17] V. I. Afanasyev, Ch. Boeinghoff, G. Kersting, V. A. Vatutin, “Conditional limit theorems for intermediately subcritical branching processes in random environment”, Ann. Inst. Henri Poincaré Probab. Stat., 50:2 (2014), 602–627 | DOI | MR | Zbl
[18] D. Buraczewski, E. Damek, Y. Guivarc'h, S. Mentemeier, “On multidimensional Mandelbrot's cascades”, J. Difference Equ. Appl., 20:11 (2014), 1523–1567 | DOI | MR | Zbl
[19] J. F. Collamore, S. Mentemeier, “Large excursions and conditioned laws for recursive sequences generated by random matrices”, Ann. Probab., 46:4 (2018), 2064–2120 | DOI | MR | Zbl
[20] V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl
[21] H. Furstenberg, H. Kesten, “Products of random matrices”, Ann. Math. Statist., 31:2 (1960), 457–469 | DOI | MR | Zbl