The Modulus of Oscillation of a Function about Number Sequences and Its Applications
Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 112-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a characteristic simultaneously reflecting certain properties of Riemann integrable functions $f$ on the closed interval $[0,1]$ and properties of some sequence $X=\{x_n\}$points on $[0,1]$. The properties of functions are expressed by characteristics similar to the modulus of continuity, mean oscillation modulus, and the modulus of variation, while the properties of sequences are characterized by notions of maximal deviation and deviation in $L_p$. This characteristic is used to estimate the error $R_N(f,X)$ of the quadrature formula $$ \int_0^1 f(x)\,dx=\frac{1}{N} \sum_{n=1}^N f(x_n)-R_N(f,X) $$ and to formulate condition for the uniform distribution of number sequences and the Riemann integrability of functions. All of the obtained main estimates are extremal.
Mots-clés : quadrature formula, oscillation modulus
Keywords: uniform distribution, piecewise monotone approximation.
@article{MZM_2020_107_1_a9,
     author = {E. A. Sevast'yanov},
     title = {The {Modulus} of {Oscillation} of a {Function} about {Number} {Sequences} and {Its} {Applications}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {112--129},
     publisher = {mathdoc},
     volume = {107},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a9/}
}
TY  - JOUR
AU  - E. A. Sevast'yanov
TI  - The Modulus of Oscillation of a Function about Number Sequences and Its Applications
JO  - Matematičeskie zametki
PY  - 2020
SP  - 112
EP  - 129
VL  - 107
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a9/
LA  - ru
ID  - MZM_2020_107_1_a9
ER  - 
%0 Journal Article
%A E. A. Sevast'yanov
%T The Modulus of Oscillation of a Function about Number Sequences and Its Applications
%J Matematičeskie zametki
%D 2020
%P 112-129
%V 107
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a9/
%G ru
%F MZM_2020_107_1_a9
E. A. Sevast'yanov. The Modulus of Oscillation of a Function about Number Sequences and Its Applications. Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 112-129. http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a9/

[1] L. Keipers, G. Niderreiter, Ravnomernoe raspredelenie posledovatelnostei, Mir, M., 1985 | MR | Zbl

[2] J. F. Koksma, “Een algemeen stelling uit de theorie der gelijkmatige verdeeling modulo 1”, Mathematica, Zutphen. B., 11 (1942), 49–52 | MR

[3] H. Niederreiter, “Discrepancy and convex programming”, Ann. Mat. Pura Appl. (4), 93 (1972), 89–97 | MR | Zbl

[4] H. Niederreiter, “Methods for estimating discrepancy”, Applications of Number Theory to Numerical Analysis, Academic Press, New York, 1972, 203–236 | MR

[5] E. P. Dolzhenko, E. A. Sevastyanov, “O priblizheniyakh funktsii v khausdorfovoi metrike posredstvom kusochno monotonnykh (v chastnosti, ratsionalnykh) funktsii”, Matem. sb., 101 (143):4 (12) (1976), 508–541 | MR | Zbl

[6] E. A. Sevastyanov, “Srednii modul kolebaniya i kvadraturnye formuly po teoretiko-chislovoi setke”, Matem. zametki, 101:2 (2017), 262–285 | DOI | MR | Zbl

[7] E. A. Sevastyanov, “Srednii modul kolebaniya i kusochno-monotonnaya approksimatsiya”, Matem. zametki, 31:6 (1982), 867–876 | MR | Zbl

[8] E. A. Sevastyanov, “Kusochno-monotonnaya approksimatsiya i $\Phi$-variatsii”, Anal. Math., 1:2 (1975), 141–164 | MR | Zbl

[9] E. A. Sevastyanov, “Ravnomernye priblizheniya kusochno-monotonnymi funktsiyami i nekotorye ikh prilozheniya k $\Phi$-variatsiyam i ryadam Fure”, Dokl. AN SSSR, 217:1 (1974), 27–30 | MR | Zbl

[10] E. A. Sevastyanov, “Kusochno-monotonnaya i ratsionalnaya approksimatsiya i ravnomernaya skhodimost ryadov Fure”, Anal. Math., 1:4 (1975), 283–295 | MR | Zbl

[11] E. A. Sevastyanov, “Nailuchshaya kusochno monotonnaya approksimatsiya i indikatrisa Banakha”, Matem. zametki, 26:1 (1979), 77–87 | MR | Zbl

[12] E. A. Sevastyanov, “Kusochno-monotonnaya approksimatsiya”, Konstruktivnaya teoriya funktsii {'81}, Sofiya, 1983, 150–156 | Zbl

[13] B. S. Kashin, S. V. Pastukhov, “O kratkosrochnom prognozirovanii na rynke tsennykh bumag”, Dokl. AN, 387:6 (2002), 754–756 | MR | Zbl

[14] S. V. Pastukhov, “O nekotorykh veroyatnostno-statisticheskikh metodakh v tekhnicheskom analize”, Teoriya veroyatn. i ee primen., 49:2 (2004), 297–316 | DOI | MR | Zbl