On a Multilinear Functional Equation
Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 59-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following functional equation is solved: $$ f(x_1+z)\dotsb f(x_2+z)f(x_1+\dotsb+x_{s-1}-z) =\phi_1(x)\psi_1(z)+\dotsb+\phi_m(x)\psi_m(z), $$ where $x=(x_1,\dots,x_{s-1})$, for the unknowns $f,\psi_j\colon\mathbb C\to\mathbb C$ and $\phi_j\colon\mathbb C^{s-1}\to\mathbb C$ for $s\ge 3$ and $m\le 4s-5$.
Keywords: functional equation, theta function, Weierstrass sigma function, elliptic function, addition theorems, multilinear functional-differential operators.
@article{MZM_2020_107_1_a5,
     author = {A. A. Illarionov},
     title = {On a {Multilinear} {Functional} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {59--73},
     publisher = {mathdoc},
     volume = {107},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a5/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - On a Multilinear Functional Equation
JO  - Matematičeskie zametki
PY  - 2020
SP  - 59
EP  - 73
VL  - 107
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a5/
LA  - ru
ID  - MZM_2020_107_1_a5
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T On a Multilinear Functional Equation
%J Matematičeskie zametki
%D 2020
%P 59-73
%V 107
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a5/
%G ru
%F MZM_2020_107_1_a5
A. A. Illarionov. On a Multilinear Functional Equation. Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 59-73. http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a5/

[1] V. M. Bukhshtaber, D. V. Leikin, “Trilineinye funktsionalnye uravneniya”, UMN, 60:2 (362) (2005), 151–152 | DOI | MR | Zbl

[2] V. M. Bukhshtaber, D. V. Leikin, “Zakony slozheniya na yakobianakh ploskikh algebraicheskikh krivykh”, Nelineinaya dinamika, Tr. MIAN, 251, Nauka, MAIK «Nauka/Interperiodika», M., 2005, 54–126 | MR | Zbl

[3] V. M. Bukhshtaber, I. M. Krichever, “Integriruemye uravneniya, teoremy slozheniya i problema Rimana–Shottki”, UMN, 61:1 (367) (2006), 25–84 | DOI | MR | Zbl

[4] R. Rochberg, L. A. Rubel, “A functional equation”, Indiana Univ. Math. J., 41:2 (1992), 363–376 | DOI | MR | Zbl

[5] M. Bonk, “The addition theorem of Weierstrass's sigma function”, Math. Ann., 298:4 (1994), 591–610 | DOI | MR | Zbl

[6] P. Sinopoulos, “Generalized sine equation. I”, Aequationes Math., 48:2-3 (1994), 171–193 | DOI | MR | Zbl

[7] M. Bonk, “The characterization of theta functions by functional equations”, Abh. Math. Sem. Univ. Hamburg, 65 (1995), 29–55 | DOI | MR | Zbl

[8] M. Bonk, “The addition formula for theta function”, Aequationes Math., 53:1-2 (1997), 54–72 | DOI | MR | Zbl

[9] A. Járai, W. Sander, “On the characterization of Weierstrass's sigma function”, Functional Equations – Results and Advances, Adv. Math. (Dordr.), 3, Kluwer Acad. Publ., Dordrecht, 2002, 29–79 | MR | Zbl

[10] V. A. Bykovskii, “Giperkvazimnogochleny i ikh prilozheniya”, Funkts. analiz i ego pril., 50:3 (2016), 34–46 | DOI | MR | Zbl

[11] V. A. Bykovskii, “O range nechetnykh giperkvazimnogochlenov”, Dokl. AN, 470:3 (2016), 255–256 | DOI | Zbl

[12] A. A. Illarionov, “Funktsionalnoe uravnenie i sigma-funktsiya Veiershtrassa”, Funkts. analiz i ego pril., 50:4 (2016), 43–54 | DOI | MR | Zbl

[13] A. A. Illarionov, “Reshenie funktsionalnykh uravnenii, svyazannykh s ellipticheskimi funktsiyami”, Analiticheskaya teoriya chisel, Tr. MIAN, 299, MAIK «Nauka/Interperiodika», M., 2017, 105–117 | DOI

[14] A. A. Illarionov, “Giperellipticheskie sistemy posledovatelnostei ranga 4”, Matem. sb., 210:9 (2019), 59–88 | DOI | Zbl

[15] A. A. Illarionov, M. A. Romanov, “Giperkvazimnogochleny dlya teta-funktsii”, Funkts. analiz i ego pril., 52:3 (2018), 84–87 | DOI | Zbl

[16] A. A. Illarionov, “Reshenie funktsionalnogo uravneniya, svyazannogo s trilineinymi differentsialnymi operatorami”, Dalnevost. matem. zhurn., 16:2 (2016), 169–180 | MR | Zbl

[17] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza. Ch. 2. Transtsendentnye funktsii, Editorial URSS, M., 2002 | Zbl

[18] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR

[19] S. Stoilov, Teoriya funktsii kompleksnogo peremennogo, T. 1, IL, M., 1962 | MR | Zbl