On the Relation between Weak Solutions of Elliptic Dirichlet and Neumann Boundary-Value Problems for Plane Simply Connected Domains
Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 32-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any (possibly unbounded) simply connected domain $\Omega\subset\mathbb{R}^2$ whose complement has nonempty interior, we establish an explicit relation between the solving operators of the elliptic Dirichlet and Neumann boundary-value problems for classes of weak solutions with first derivatives from $L_p(\Omega)$. It is assumed that the uniformly elliptic operators are of divergence form with essentially bounded matrix coefficients and with functionals on the right-hand side which are bounded on the spaces of corresponding weak solutions. The relation between the solving operators is established under the necessary and sufficient solvability conditions for the Neumann problem, i.e., when the given functional does vanish on the subspace of constants.
Mots-clés : elliptic equation, divergence form
Keywords: general form of a linear continuous functional, essentially bounded matrix-valued coefficients, solving operator, first-order systems, Douglis–Nirenberg ellipticity, weak solution, Dirichlet problem, Neumann problem.
@article{MZM_2020_107_1_a3,
     author = {V. N. Denisov and A. M. Bogovskiy},
     title = {On the {Relation} between {Weak} {Solutions} of {Elliptic} {Dirichlet} and {Neumann} {Boundary-Value} {Problems} for {Plane} {Simply} {Connected} {Domains}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {32--48},
     publisher = {mathdoc},
     volume = {107},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a3/}
}
TY  - JOUR
AU  - V. N. Denisov
AU  - A. M. Bogovskiy
TI  - On the Relation between Weak Solutions of Elliptic Dirichlet and Neumann Boundary-Value Problems for Plane Simply Connected Domains
JO  - Matematičeskie zametki
PY  - 2020
SP  - 32
EP  - 48
VL  - 107
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a3/
LA  - ru
ID  - MZM_2020_107_1_a3
ER  - 
%0 Journal Article
%A V. N. Denisov
%A A. M. Bogovskiy
%T On the Relation between Weak Solutions of Elliptic Dirichlet and Neumann Boundary-Value Problems for Plane Simply Connected Domains
%J Matematičeskie zametki
%D 2020
%P 32-48
%V 107
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a3/
%G ru
%F MZM_2020_107_1_a3
V. N. Denisov; A. M. Bogovskiy. On the Relation between Weak Solutions of Elliptic Dirichlet and Neumann Boundary-Value Problems for Plane Simply Connected Domains. Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 32-48. http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a3/

[1] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl

[2] R. Adams, J. J. F. Fournier, Sobolev Spaces, Pure Appl. Math. (Amst.), 140, Elsevier, Amsterdam, 2003 | MR

[3] S. Agmon, A. Douglis, J. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II”, Comm. Pure Appl. Math., 17 (1964), 35–92 | DOI | MR | Zbl

[4] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR | Zbl

[5] P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadelphia, PA, 2013 | MR | Zbl

[6] L. Beznea, M. N. Pascu, N. R. Pascu, “An equivalence between the Dirichlet and the Neumann problem for the Laplace operator”, Potential Anal., 44:4 (2016), 655–672 | DOI | MR | Zbl

[7] L. Beznea, M. N. Pascu, N. R. Pascu, “Connections between the Dirichlet and the Neumann problem for continuous and integrable boundary data”, Stochastic Analysis and Related Topics, Progr. Probab., 72, Springer, Cham, 2017, 85–97 | DOI | MR