Keywords: general form of a linear continuous functional, essentially bounded matrix-valued coefficients, solving operator, first-order systems, Douglis–Nirenberg ellipticity, weak solution, Dirichlet problem, Neumann problem.
@article{MZM_2020_107_1_a3,
author = {V. N. Denisov and A. M. Bogovskiy},
title = {On the {Relation} between {Weak} {Solutions} of {Elliptic} {Dirichlet} and {Neumann} {Boundary-Value} {Problems} for {Plane} {Simply} {Connected} {Domains}},
journal = {Matemati\v{c}eskie zametki},
pages = {32--48},
year = {2020},
volume = {107},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a3/}
}
TY - JOUR AU - V. N. Denisov AU - A. M. Bogovskiy TI - On the Relation between Weak Solutions of Elliptic Dirichlet and Neumann Boundary-Value Problems for Plane Simply Connected Domains JO - Matematičeskie zametki PY - 2020 SP - 32 EP - 48 VL - 107 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a3/ LA - ru ID - MZM_2020_107_1_a3 ER -
%0 Journal Article %A V. N. Denisov %A A. M. Bogovskiy %T On the Relation between Weak Solutions of Elliptic Dirichlet and Neumann Boundary-Value Problems for Plane Simply Connected Domains %J Matematičeskie zametki %D 2020 %P 32-48 %V 107 %N 1 %U http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a3/ %G ru %F MZM_2020_107_1_a3
V. N. Denisov; A. M. Bogovskiy. On the Relation between Weak Solutions of Elliptic Dirichlet and Neumann Boundary-Value Problems for Plane Simply Connected Domains. Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 32-48. http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a3/
[1] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl
[2] R. Adams, J. J. F. Fournier, Sobolev Spaces, Pure Appl. Math. (Amst.), 140, Elsevier, Amsterdam, 2003 | MR
[3] S. Agmon, A. Douglis, J. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II”, Comm. Pure Appl. Math., 17 (1964), 35–92 | DOI | MR | Zbl
[4] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR | Zbl
[5] P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadelphia, PA, 2013 | MR | Zbl
[6] L. Beznea, M. N. Pascu, N. R. Pascu, “An equivalence between the Dirichlet and the Neumann problem for the Laplace operator”, Potential Anal., 44:4 (2016), 655–672 | DOI | MR | Zbl
[7] L. Beznea, M. N. Pascu, N. R. Pascu, “Connections between the Dirichlet and the Neumann problem for continuous and integrable boundary data”, Stochastic Analysis and Related Topics, Progr. Probab., 72, Springer, Cham, 2017, 85–97 | DOI | MR