Oscillations of a Stratified Liquid Partially Covered with Ice (General Case)
Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 130-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of small motions of an ideal stratified liquid whose free surface consists of three regions: liquid surface without ice, a region of elastic ice, and a region of crumbled ice. The elastic ice is modeled by an elastic plate. The crumbled ice is understood as weighty particles of some matter floating on the free surface. Using the method of orthogonal projection of boundary conditions on a moving surface and the introduction of auxiliary problems, we reduce the original initial boundary value problem to an equivalent Cauchy problem for a second-order differential equation in a Hilbert space. We obtain conditions under which there exists a strong (with respect to time) solution of the initial boundary value problem describing the evolution of the hydrodynamic system under consideration.
Keywords: stratified liquid, crumbled ice, elastic ice, initial boundary value problem, Cauchy problem, strong solution.
@article{MZM_2020_107_1_a10,
     author = {D. O. Tsvetkov},
     title = {Oscillations of a {Stratified} {Liquid} {Partially} {Covered} with {Ice} {(General} {Case)}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {130--144},
     publisher = {mathdoc},
     volume = {107},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a10/}
}
TY  - JOUR
AU  - D. O. Tsvetkov
TI  - Oscillations of a Stratified Liquid Partially Covered with Ice (General Case)
JO  - Matematičeskie zametki
PY  - 2020
SP  - 130
EP  - 144
VL  - 107
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a10/
LA  - ru
ID  - MZM_2020_107_1_a10
ER  - 
%0 Journal Article
%A D. O. Tsvetkov
%T Oscillations of a Stratified Liquid Partially Covered with Ice (General Case)
%J Matematičeskie zametki
%D 2020
%P 130-144
%V 107
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a10/
%G ru
%F MZM_2020_107_1_a10
D. O. Tsvetkov. Oscillations of a Stratified Liquid Partially Covered with Ice (General Case). Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 130-144. http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a10/

[1] D. O. Tsvetkov, “Malye dvizheniya idealnoi stratifitsirovannoi zhidkosti, chastichno pokrytoi uprugim ldom”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:3 (2018), 328–347 | DOI | Zbl

[2] D. O. Tsvetkov, “Kolebaniya stratifitsirovannoi zhidkosti,chastichno pokrytoi kroshenym ldom”, Izv. vuzov. Matem., 2018, no. 12, 70–85 | Zbl

[3] C. A. Gabov, A. G. Sveshnikov, “Matematicheskie zadachi dinamiki flotiruyuschei zhidkosti”, Itogi nauki i tekhn. Ser. Mat. anal., 28, VINITI, M., 1990, 3–86 | MR | Zbl

[4] N. D. Kopachevsky, S. G. Krein, Operator Approach to Linear Problems of Hydrodynamics. Vol. 1. Self-Adjoint Problems for an Ideal Fluid, Oper. Theory Adv. Appl., 128, Birkhäuser Verlag, Basel, 2001 | MR

[5] K. Rektorys, Variational Methods in Mathematics, Science and Engineering, D. Reidel Publ., Dordrecht, 1980 | MR | Zbl

[6] D. O. Tsvetkov, “Malye dvizheniya sistemy idealnykh stratifitsirovannykh zhidkostei, polnostyu pokrytoi kroshenym ldom”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 26 (2018), 105–120 | DOI | Zbl