On Nonrational Fibers of del~Pezzo Fibrations over Curves
Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 881-893.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider threefold del Pezzo fibrations over a curve germ whose central fiber is nonrational. Under the additional assumption that the singularities of the total space are at worst ordinary double points, we apply a suitable base change and show that there is a one-to-one correspondence between such fibrations and certain nonsingular del Pezzo fibrations equipped with a cyclic group action.
Keywords: Mori fibration, rationality.
Mots-clés : del Pezzo surface
@article{MZM_2019_106_6_a8,
     author = {K. V. Loginov},
     title = {On {Nonrational} {Fibers} of {del~Pezzo} {Fibrations} over {Curves}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {881--893},
     publisher = {mathdoc},
     volume = {106},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a8/}
}
TY  - JOUR
AU  - K. V. Loginov
TI  - On Nonrational Fibers of del~Pezzo Fibrations over Curves
JO  - Matematičeskie zametki
PY  - 2019
SP  - 881
EP  - 893
VL  - 106
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a8/
LA  - ru
ID  - MZM_2019_106_6_a8
ER  - 
%0 Journal Article
%A K. V. Loginov
%T On Nonrational Fibers of del~Pezzo Fibrations over Curves
%J Matematičeskie zametki
%D 2019
%P 881-893
%V 106
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a8/
%G ru
%F MZM_2019_106_6_a8
K. V. Loginov. On Nonrational Fibers of del~Pezzo Fibrations over Curves. Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 881-893. http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a8/

[1] V. A. Iskovskikh, Yu. G. Prokhorov, Algebraic Geometry. V. Fano Varieties, Encyclopaedia Math. Sci., 47, Springer-Verlag, Berlin, 1999 | MR

[2] F. Hidaka, K. Watanabe, “Normal Gorenstein surfaces with ample anti-canonical divisor”, Tokyo J. Math., 04:2 (1981), 319–330 | DOI | MR

[3] S. Mori, Yu. G. Prokhorov, “Multiple Fibers of del Pezzo Fibrations”, Mnogomernaya algebraicheskaya geometriya, Tr. MIAN, 264, MAIK «Nauka/Interperiodika», M., 2009, 137–151 | MR

[4] M. Kontsevich, Yu. Tschinkel, Specialization of Birational Types, 2017, arXiv: 1708.05699

[5] B. Totaro, “Rationality does not specialise among terminal varieties”, Math. Proc. Cambridge Philos. Soc., 161:1 (2016), 13–15 | DOI | MR

[6] A. Perry, “Rationality does not specialize among terminal fourfolds”, Algebra Number Theory, 11:9 (2017), 2193–2196 | DOI | MR

[7] T. Fujisawa, “On non-rational numerical del Pezzo surfaces”, Osaka J. Math., 32:3 (1995), 613–636 | MR

[8] K. Matsuki, Introduction to the Mori Program, Springer, New York, 2002 | DOI | MR

[9] Y. Kawamata, K. Matsuda, K. Matsuki, “Introduction to the minimal model problem”, Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 283–360 | MR

[10] Y. Kawamata, “Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces”, Ann. of Math. (2), 127:1 (1988), 93–163 | DOI | MR

[11] M. Reid, “Nonnormal del Pezzo surfaces”, Publ. Res. Inst. Math. Sci., 30:5 (1994), 695–727 | DOI | MR

[12] M. Abe, M. Furushima, “On non-normal del Pezzo surfaces”, Math. Nachr., 260 (2003), 3–13 | DOI | MR

[13] J. Kollár, Sh. Mori, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998 | MR

[14] J. Kollár, Singularities of the Minimal Model Program, Cambridge Tracts in Math., 200, Cambridge Univ. Press, Cambridge, 2013 | MR

[15] I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, Arithmetic, and Geometry, Progr. Math., 269, Birkhäuser Boston, Boston, MA, 2009, 443–548 | DOI | MR

[16] Vik. S. Kulikov, “Vyrozhdeniya $K3$ poverkhnostei i poverkhnostei Enrikvesa”, Izv. AN SSSR. Ser. matem., 41:5 (1977), 1008–1042 | MR | Zbl