Nonlocal Boundary-Value Problem for a Linear Ordinary Differential Equation with Fractional Discretely Distributed Differentiation Operator
Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 860-865.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlocal boundary-value problem for a linear ordinary differential equation with fractional discretely distributed differentiation operator is considered. The existence and uniqueness theorem for the solution of this problem is proved.
Keywords: Caputo derivative, boundary-value problem, fractional derivative, ordinary differential equation of fractional order, discretely distributed differentiation operator.
@article{MZM_2019_106_6_a6,
     author = {L. Kh. Gadzova},
     title = {Nonlocal {Boundary-Value} {Problem} for a {Linear} {Ordinary} {Differential} {Equation} with {Fractional} {Discretely} {Distributed} {Differentiation} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {860--865},
     publisher = {mathdoc},
     volume = {106},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a6/}
}
TY  - JOUR
AU  - L. Kh. Gadzova
TI  - Nonlocal Boundary-Value Problem for a Linear Ordinary Differential Equation with Fractional Discretely Distributed Differentiation Operator
JO  - Matematičeskie zametki
PY  - 2019
SP  - 860
EP  - 865
VL  - 106
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a6/
LA  - ru
ID  - MZM_2019_106_6_a6
ER  - 
%0 Journal Article
%A L. Kh. Gadzova
%T Nonlocal Boundary-Value Problem for a Linear Ordinary Differential Equation with Fractional Discretely Distributed Differentiation Operator
%J Matematičeskie zametki
%D 2019
%P 860-865
%V 106
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a6/
%G ru
%F MZM_2019_106_6_a6
L. Kh. Gadzova. Nonlocal Boundary-Value Problem for a Linear Ordinary Differential Equation with Fractional Discretely Distributed Differentiation Operator. Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 860-865. http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a6/

[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003 | Zbl

[2] J. H. Barrett, “Differential equations of non-integer order”, Canadian J. Math., 6:4 (1954), 529–541 | DOI | MR

[3] M. M. Dzhrbashyan, A. B. Nersesyan, “Drobnye proizvodnye i zadacha Koshi dlya differentsialnykh uravnenii drobnogo poryadka”, Izv. AN Armyanskoi SSR. Matem., 3:1 (1968), 3–29 | MR

[4] M. M. Dzhrbashyan, “Kraevaya zadacha dlya differentsialnogo operatora drobnogo poryadka tipa Shturma–Liuvillya”, Izv. AN Armyanskoi SSR. Matem., 5:2 (1970), 71–96 | MR

[5] M. M. Dzhrbashyan, Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966 | MR | Zbl

[6] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[7] A. M. Nakhushev, R. B. Tkhakakhov, “O kontinualnykh analogakh reologicheskikh uravnenii sostoyaniya i logisticheskom zakone izmeneniya vyazkouprugikh svoistv polimera”, Dokl. Adygskoi (Cherkesskoi) Mezhdunar. AN, 1:2 (1995), 6–11

[8] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, San Diego, CA, 1999 | MR

[9] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006 | MR

[10] V. V. Uchaikin, Metod drobnykh proizvodnykh, Izd-vo “Artishok”, Ulyanovsk, 2008

[11] A. V. Pskhu, “Kraevaya zadacha dlya uravneniya v chastnykh proizvodnykh pervogo poryadka s operatorom drobnogo diskretno raspredelennogo differentsirovaniya”, Differents. uravneniya, 52:12 (2016), 1682–1694 | DOI

[12] A. V. Pskhu, “Uravnenie drobnoi diffuzii s operatorom diskretno raspredelennogo differentsirovaniya”, Sib. elektron. matem. izv., 13 (2016), 1078–1098 | DOI | MR | Zbl

[13] M. Caputo, “Diffusion with space memory modelled with distributed order space fractional differential equations”, Ann. of Geophys., 46:2 (2003), 223–234

[14] K. Diethelm, N. J. Ford, “Numerical analysis for distributed-order differential equations”, J. Comput. Appl. Math., 225:1 (2009), 96–104 | DOI | MR

[15] Z. Jiao, Y. Q. Chen, I. Podlubny, Distributed-Order Dynamic Systems. Stability, Simulation, Applications and Perspectives, Springer, London, 2012 | MR

[16] I. Ozturk, “On the theory of fractional differential equations”, Dokl. Adygskoi (Cherkesskoi) Mezhdunar. AN, 3:2 (1998), 35–39

[17] A. V. Pskhu, “Nachalnaya zadacha dlya lineinogo obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Matem. sb., 202:4 (2011), 111–122 | DOI | MR | Zbl

[18] L. Kh. Gadzova, “Obobschennaya zadacha Dirikhle dlya lineinogo differentsialnogo uravneniya drobnogo poryadka s postoyannymi koeffitsientami”, Differents. uravneniya, 50:1 (2014), 121–125 | DOI

[19] L. Kh. Gadzova, “Zadachi Dirikhle i Neimana dlya obyknovennogo differentsialnogo uravneniya drobnogo poryadka s postoyannymi koeffitsientami”, Differents. uravneniya, 51:12 (2015), 1580–1586 | DOI

[20] L. Kh. Gadzova, “Zadacha Neimana dlya obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Vladikavk. matem. zhurn., 18:3 (2016), 22–30 | MR

[21] L. Kh. Gadzova, “Kraevaya zadacha dlya lineinogo obyknovennogo differentsialnogo uravneniya s operatorom drobnogo diskretno raspredelennogo differentsirovaniya”, Differents. uravneniya, 54:2 (2018), 180–186 | DOI

[22] L. Kh. Gadzova, “Ob asimptotike fundamentalnogo resheniya obyknovennogo differentsialnogo uravneniya drobnogo poryadka s postoyannymi koeffitsientami”, Vestn. KRAUNTs. Fiz.-matem. nauki, 2016, no. 2 (13), 7–11

[23] L. Kh. Gadzova, “Kraevaya zadacha so smescheniem dlya lineinogo obyknovennogo differentsialnogo uravneniya s operatorom diskretno raspredelennogo differentsirovaniya”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 149, VINITI RAN, M., 2018, 25–30 | MR

[24] F. T. Bogatyreva, “Nelokalnaya kraevaya zadacha dlya obyknovennogo differentsialnogo uravneniya drobnogo poryadka s operatorom Dzhrbashyana–Nersesyana”, Dokl. Adygskoi (Cherkesskoi) Mezhdunar. AN, 16:2 (2014), 28–33

[25] E. M. Wright, “On the coefficients of power series having exponential singularities”, J. London Math. Soc., 8:1 (1933), 71–79 | DOI | MR