Nonlocal Boundary-Value Problem for a Linear Ordinary Differential Equation with Fractional Discretely Distributed Differentiation Operator
Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 860-865

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlocal boundary-value problem for a linear ordinary differential equation with fractional discretely distributed differentiation operator is considered. The existence and uniqueness theorem for the solution of this problem is proved.
Keywords: Caputo derivative, boundary-value problem, fractional derivative, ordinary differential equation of fractional order, discretely distributed differentiation operator.
@article{MZM_2019_106_6_a6,
     author = {L. Kh. Gadzova},
     title = {Nonlocal {Boundary-Value} {Problem} for a {Linear} {Ordinary} {Differential} {Equation} with {Fractional} {Discretely} {Distributed} {Differentiation} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {860--865},
     publisher = {mathdoc},
     volume = {106},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a6/}
}
TY  - JOUR
AU  - L. Kh. Gadzova
TI  - Nonlocal Boundary-Value Problem for a Linear Ordinary Differential Equation with Fractional Discretely Distributed Differentiation Operator
JO  - Matematičeskie zametki
PY  - 2019
SP  - 860
EP  - 865
VL  - 106
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a6/
LA  - ru
ID  - MZM_2019_106_6_a6
ER  - 
%0 Journal Article
%A L. Kh. Gadzova
%T Nonlocal Boundary-Value Problem for a Linear Ordinary Differential Equation with Fractional Discretely Distributed Differentiation Operator
%J Matematičeskie zametki
%D 2019
%P 860-865
%V 106
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a6/
%G ru
%F MZM_2019_106_6_a6
L. Kh. Gadzova. Nonlocal Boundary-Value Problem for a Linear Ordinary Differential Equation with Fractional Discretely Distributed Differentiation Operator. Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 860-865. http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a6/