Oscillation Properties of a Multipoint Fourth-Order Boundary-Value Problem with Spectral Parameter in the Boundary Condition
Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 854-859.

Voir la notice de l'article provenant de la source Math-Net.Ru

A multipoint fourth-order boundary-value problem with spectral parameter in the boundary condition is considered. It is proved that its spectrum is simple and the system of derivative eigenfunctions has oscillation properties.
Keywords: oscillation eigenfunction, sign-regular operator, Sobolev space.
@article{MZM_2019_106_6_a5,
     author = {A. A. Vladimirov and E. S. Karulina},
     title = {Oscillation {Properties} of a {Multipoint} {Fourth-Order} {Boundary-Value} {Problem} with {Spectral} {Parameter} in the {Boundary} {Condition}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {854--859},
     publisher = {mathdoc},
     volume = {106},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a5/}
}
TY  - JOUR
AU  - A. A. Vladimirov
AU  - E. S. Karulina
TI  - Oscillation Properties of a Multipoint Fourth-Order Boundary-Value Problem with Spectral Parameter in the Boundary Condition
JO  - Matematičeskie zametki
PY  - 2019
SP  - 854
EP  - 859
VL  - 106
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a5/
LA  - ru
ID  - MZM_2019_106_6_a5
ER  - 
%0 Journal Article
%A A. A. Vladimirov
%A E. S. Karulina
%T Oscillation Properties of a Multipoint Fourth-Order Boundary-Value Problem with Spectral Parameter in the Boundary Condition
%J Matematičeskie zametki
%D 2019
%P 854-859
%V 106
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a5/
%G ru
%F MZM_2019_106_6_a5
A. A. Vladimirov; E. S. Karulina. Oscillation Properties of a Multipoint Fourth-Order Boundary-Value Problem with Spectral Parameter in the Boundary Condition. Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 854-859. http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a5/

[1] N. B. Kerimov, Z. S. Aliev, “Bazisnye svoistva odnoi spektralnoi zadachi so spektralnym parametrom v granichnom uslovii”, Matem. sb., 197:10 (2006), 65–86 | DOI | MR | Zbl

[2] R. Ch. Kulaev, “K voprosu o neostsillyatsii differentsialnogo uravneniya na grafe”, Vladikavk. matem. zhurn., 19:3 (2017), 31–40 | MR

[3] P. Lancaster, A. Shkalikov, Q. Ye, “Strongly definitizable linear pencils in Hilbert space”, Integral Equations Operator Theory, 17:3 (1993), 338–360 | DOI | MR

[4] A. A Vladimirov, “K voprosu ob ostsillyatsionnykh svoistvakh polozhitelnykh differentsialnykh operatorov s singulyarnymi koeffitsientami”, Matem. zametki, 100:6 (2016), 800–806 | DOI | MR

[5] Zh. Ben Amara, A. A. Vladimirov, “Ob ostsillyatsii sobstvennykh funktsii zadachi chetvertogo poryadka so spektralnym parametrom v granichnom uslovii”, Fundament. i prikl. matem., 12:4 (2006), 41–52 | MR | Zbl

[6] Zh. Ben Amara, A. A. Vladimirov, A. A. Shkalikov, “Spektralnye svoistva odnogo lineinogo puchka differentsialnykh operatorov chetvertogo poryadka”, Matem. zametki, 94:1 (2013), 55–67 | DOI | MR | Zbl

[7] W. Leighton, Z. Nehari, “On the oscillation of solutions of self-adjoint linear differential equations of the fourth order”, Trans. Amer. Math. Soc., 89 (1958), 325–377 | DOI | MR