On Classes of Generalized Subreducts of Tarski's Relation Algebras with One Diophantine Binary Operation
Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 821-836.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, systems of elementary axioms are found for classes of groupoids and ordered groupoids of binary relations with Diophantine operations that are generalized subreducts of the Tarski relation algebras.
Keywords: relation algebra, Diophantine operation, identity, quasi-identity, variety, quasivariety
Mots-clés : groupoid.
@article{MZM_2019_106_6_a2,
     author = {D. A. Bredikhin},
     title = {On {Classes} of {Generalized} {Subreducts} of {Tarski's} {Relation} {Algebras} with {One} {Diophantine} {Binary} {Operation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {821--836},
     publisher = {mathdoc},
     volume = {106},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a2/}
}
TY  - JOUR
AU  - D. A. Bredikhin
TI  - On Classes of Generalized Subreducts of Tarski's Relation Algebras with One Diophantine Binary Operation
JO  - Matematičeskie zametki
PY  - 2019
SP  - 821
EP  - 836
VL  - 106
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a2/
LA  - ru
ID  - MZM_2019_106_6_a2
ER  - 
%0 Journal Article
%A D. A. Bredikhin
%T On Classes of Generalized Subreducts of Tarski's Relation Algebras with One Diophantine Binary Operation
%J Matematičeskie zametki
%D 2019
%P 821-836
%V 106
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a2/
%G ru
%F MZM_2019_106_6_a2
D. A. Bredikhin. On Classes of Generalized Subreducts of Tarski's Relation Algebras with One Diophantine Binary Operation. Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 821-836. http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a2/

[1] H. Andréka, I. Neméti, I. Sain, “Algebraic logic”, Handbook of Philosophical Logic, Vol. 2, Kluwer Acad. Publ., Dordrecht, 2001, 133–247 | MR

[2] A. Tarski, “On the calculus of relations”, J. Symbolic Logic, 6 (1941), 73–89 | DOI | MR

[3] A. Tarski, “Contributions to the theory of models. III”, Nederl. Akad. Wetensch. Proc. Ser. A, 58 (1955), 56–64 | MR

[4] R. C. Lyndon, “The representation of relation algebras. II”, Ann. of Math. (2), 63 (1956), 294–307 | DOI | MR

[5] J. D. Monk, “On representable relation algebras”, Michigan Math. J., 11 (1964), 207–210 | DOI | MR

[6] B. Jónsson, “Representation of modular lattices and of relation algebras”, Trans. Amer. Math. Soc., 11 (1959), 449–464 | DOI | MR

[7] M. Haiman, “Arguesian lattices which are not type 1”, Algebra Universalis, 28:1 (1991), 128–137 | DOI | MR

[8] H. Andréka, D. A. Bredikhin, “The equational theory of union-free algebras of relations”, Algebra Universalis, 33:4 (1994), 516–532 | DOI | MR

[9] B. Jónsson, “The theory of binary relations”, Algebraic Logic, Colloq. Math. Soc. János Bolyai, 54, North-Holland, Amsterdam, 1991, 245–292 | MR

[10] D. A. Bredikhin, “O kvazitozhdestvakh algebr otnoshenii s diofantovymi operatsiyami”, Sib. matem. zhurn., 38:1 (1997), 29–41 | MR | Zbl

[11] D. A. Bredikhin, “Ob algebrakh otnoshenii s diofantovymi operatsiyami”, Dokl. AN, 360:5 (1998), 594–595

[12] F. Bönere, R. Pöschel, “Clones of operations on binary relations”, Contributions to General Algebra, 7, Hölder-Pichler-Tempsky, Vienna, 1991, 50–70 | MR

[13] D. A. Bredikhin, “On relation algebras with general superpositions”, Algebraic Logic, Colloq. Math. Soc. János Bolyai, 54, North-Holland, Amsterdam, 1991, 111–124 | MR

[14] V. V. Vagner, “Restriktivnye polugruppy”, Izv. vuzov. Matem., 1962, no. 6, 19–27 | MR | Zbl

[15] K. A. Zaretskii, “Predstavlenie uporyadochennykh polugrupp binarnymi otnosheniyami”, Izv. vuzov. Matem., 1959, no. 6, 48–50 | MR | Zbl

[16] H. Andréka, “Representation of distributive lattice-ordered semigroups with binary relations”, Algebra Universalis, 28:1 (1991), 12–25 | DOI | MR

[17] H. Andréka, Sz. Mikulás, “Axiomatizability of positive algebras of binary relations”, Algebra Universalis, 66:1-2 (2011), 7–34 | DOI | MR

[18] I. Hodkinson, Sz. Mikulás, “Axiomatizability of reducts of algebras of relations”, Algebra Universalis, 43:2-3 (2000), 127–156 | DOI | MR

[19] I. Hodkinson, Sz. Mikulás, “Representable semilattice-ordered monoids”, Algebra Universalis, 57:3 (2007), 333–370 | DOI | MR

[20] R. Hirsch, Sz. Mikulás, “Axiomatizability of representable domain algebras”, J. Log. Algebr. Program., 80:2 (2011), 75–91 | DOI | MR

[21] I. Hodkinson, Sz. Mikulás, “Ordered domain algebras”, J. Appl. Log., 11:3 (2013), 266–271 | DOI | MR

[22] B. M. Schein, “Relation algebras and function semigroups”, Semigroup Forum, 1:1 (1970), 1–62 | DOI | MR

[23] B. M. Schein, “Representation of subreducts of Tarski relation algebras”, Algebraic Logic, Colloq. Math. Soc. János Bolyai, 54, North-Holland, Amsterdam, 1991, 621–635 | MR

[24] D. A. Bredikhin, “On varieties of groupoids of relations with operation of binary cylindrification”, Algebra Universalis, 73:1 (2015), 43–52 | DOI | MR

[25] D. A. Bredikhin, “Tozhdestva gruppoidov otnoshenii s operatsiei otsilindrovannogo peresecheniya”, Izv. vuzov. Matem., 2018, no. 8, 12–20

[26] D. A. Bredikhin, “On generalized subreducts of Tarski's algebras of relations with the operation of bi-directional intersection”, Algebra Universalis, 79:4 (2018), Art. 77 | DOI | MR

[27] D. A. Bredikhin, “Ekvatsionalnaya teoriya algebr otnoshenii s pozitivnymi operatsiyami”, Izv. vuzov. Matem., 1993, no. 3, 23–30 | MR | Zbl

[28] J. D. Phillips, “Short equational bases for two varieties of groupoids associated with involuted restrictive bisemigroups of binary relations”, Semigroup Forum, 73:2 (2006), 308–312 | DOI | MR

[29] S. Yu. Katyshev, V. T. Markov, A. A. Nechaev, “Ispolzovanie neassotsiativnykh gruppoidov dlya realizatsii protsedury otkrytogo raspredeleniya klyuchei”, Diskret. matem., 26:3 (2014), 45–64 | DOI | MR

[30] L. Henkin, J. D. Monk, A. Tarski, Cylindric Algebras, Part I, North-Holland Publishing, Amsterdam, 1971 | MR