Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_6_a2, author = {D. A. Bredikhin}, title = {On {Classes} of {Generalized} {Subreducts} of {Tarski's} {Relation} {Algebras} with {One} {Diophantine} {Binary} {Operation}}, journal = {Matemati\v{c}eskie zametki}, pages = {821--836}, publisher = {mathdoc}, volume = {106}, number = {6}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a2/} }
TY - JOUR AU - D. A. Bredikhin TI - On Classes of Generalized Subreducts of Tarski's Relation Algebras with One Diophantine Binary Operation JO - Matematičeskie zametki PY - 2019 SP - 821 EP - 836 VL - 106 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a2/ LA - ru ID - MZM_2019_106_6_a2 ER -
D. A. Bredikhin. On Classes of Generalized Subreducts of Tarski's Relation Algebras with One Diophantine Binary Operation. Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 821-836. http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a2/
[1] H. Andréka, I. Neméti, I. Sain, “Algebraic logic”, Handbook of Philosophical Logic, Vol. 2, Kluwer Acad. Publ., Dordrecht, 2001, 133–247 | MR
[2] A. Tarski, “On the calculus of relations”, J. Symbolic Logic, 6 (1941), 73–89 | DOI | MR
[3] A. Tarski, “Contributions to the theory of models. III”, Nederl. Akad. Wetensch. Proc. Ser. A, 58 (1955), 56–64 | MR
[4] R. C. Lyndon, “The representation of relation algebras. II”, Ann. of Math. (2), 63 (1956), 294–307 | DOI | MR
[5] J. D. Monk, “On representable relation algebras”, Michigan Math. J., 11 (1964), 207–210 | DOI | MR
[6] B. Jónsson, “Representation of modular lattices and of relation algebras”, Trans. Amer. Math. Soc., 11 (1959), 449–464 | DOI | MR
[7] M. Haiman, “Arguesian lattices which are not type 1”, Algebra Universalis, 28:1 (1991), 128–137 | DOI | MR
[8] H. Andréka, D. A. Bredikhin, “The equational theory of union-free algebras of relations”, Algebra Universalis, 33:4 (1994), 516–532 | DOI | MR
[9] B. Jónsson, “The theory of binary relations”, Algebraic Logic, Colloq. Math. Soc. János Bolyai, 54, North-Holland, Amsterdam, 1991, 245–292 | MR
[10] D. A. Bredikhin, “O kvazitozhdestvakh algebr otnoshenii s diofantovymi operatsiyami”, Sib. matem. zhurn., 38:1 (1997), 29–41 | MR | Zbl
[11] D. A. Bredikhin, “Ob algebrakh otnoshenii s diofantovymi operatsiyami”, Dokl. AN, 360:5 (1998), 594–595
[12] F. Bönere, R. Pöschel, “Clones of operations on binary relations”, Contributions to General Algebra, 7, Hölder-Pichler-Tempsky, Vienna, 1991, 50–70 | MR
[13] D. A. Bredikhin, “On relation algebras with general superpositions”, Algebraic Logic, Colloq. Math. Soc. János Bolyai, 54, North-Holland, Amsterdam, 1991, 111–124 | MR
[14] V. V. Vagner, “Restriktivnye polugruppy”, Izv. vuzov. Matem., 1962, no. 6, 19–27 | MR | Zbl
[15] K. A. Zaretskii, “Predstavlenie uporyadochennykh polugrupp binarnymi otnosheniyami”, Izv. vuzov. Matem., 1959, no. 6, 48–50 | MR | Zbl
[16] H. Andréka, “Representation of distributive lattice-ordered semigroups with binary relations”, Algebra Universalis, 28:1 (1991), 12–25 | DOI | MR
[17] H. Andréka, Sz. Mikulás, “Axiomatizability of positive algebras of binary relations”, Algebra Universalis, 66:1-2 (2011), 7–34 | DOI | MR
[18] I. Hodkinson, Sz. Mikulás, “Axiomatizability of reducts of algebras of relations”, Algebra Universalis, 43:2-3 (2000), 127–156 | DOI | MR
[19] I. Hodkinson, Sz. Mikulás, “Representable semilattice-ordered monoids”, Algebra Universalis, 57:3 (2007), 333–370 | DOI | MR
[20] R. Hirsch, Sz. Mikulás, “Axiomatizability of representable domain algebras”, J. Log. Algebr. Program., 80:2 (2011), 75–91 | DOI | MR
[21] I. Hodkinson, Sz. Mikulás, “Ordered domain algebras”, J. Appl. Log., 11:3 (2013), 266–271 | DOI | MR
[22] B. M. Schein, “Relation algebras and function semigroups”, Semigroup Forum, 1:1 (1970), 1–62 | DOI | MR
[23] B. M. Schein, “Representation of subreducts of Tarski relation algebras”, Algebraic Logic, Colloq. Math. Soc. János Bolyai, 54, North-Holland, Amsterdam, 1991, 621–635 | MR
[24] D. A. Bredikhin, “On varieties of groupoids of relations with operation of binary cylindrification”, Algebra Universalis, 73:1 (2015), 43–52 | DOI | MR
[25] D. A. Bredikhin, “Tozhdestva gruppoidov otnoshenii s operatsiei otsilindrovannogo peresecheniya”, Izv. vuzov. Matem., 2018, no. 8, 12–20
[26] D. A. Bredikhin, “On generalized subreducts of Tarski's algebras of relations with the operation of bi-directional intersection”, Algebra Universalis, 79:4 (2018), Art. 77 | DOI | MR
[27] D. A. Bredikhin, “Ekvatsionalnaya teoriya algebr otnoshenii s pozitivnymi operatsiyami”, Izv. vuzov. Matem., 1993, no. 3, 23–30 | MR | Zbl
[28] J. D. Phillips, “Short equational bases for two varieties of groupoids associated with involuted restrictive bisemigroups of binary relations”, Semigroup Forum, 73:2 (2006), 308–312 | DOI | MR
[29] S. Yu. Katyshev, V. T. Markov, A. A. Nechaev, “Ispolzovanie neassotsiativnykh gruppoidov dlya realizatsii protsedury otkrytogo raspredeleniya klyuchei”, Diskret. matem., 26:3 (2014), 45–64 | DOI | MR
[30] L. Henkin, J. D. Monk, A. Tarski, Cylindric Algebras, Part I, North-Holland Publishing, Amsterdam, 1971 | MR