Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_6_a12, author = {I. G. Tsar'kov}, title = {Local {Approximation} {Properties} of {Sets} and {Continuous} {Selections} on {Them}}, journal = {Matemati\v{c}eskie zametki}, pages = {924--939}, publisher = {mathdoc}, volume = {106}, number = {6}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a12/} }
I. G. Tsar'kov. Local Approximation Properties of Sets and Continuous Selections on Them. Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 924-939. http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a12/
[1] E. Michael, “Continuous selections. I”, Ann. of Math. (2), 63:2 (1956), 361–382 | DOI | MR
[2] I. G. Tsarkov, “Lokalnaya i globalnaya nepreryvnaya $\varepsilon$-vyborka”, Izv. RAN. Ser. matem., 80:2 (2016), 165–184 | DOI | MR | Zbl
[3] A. R. Alimov, I. G. Tsarkov, “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, UMN, 71:1 (427) (2016), 3–84 | DOI | MR | Zbl
[4] I. G. Tsarkov, “Nepreryvnye vyborki iz operatorov metricheskoi proektsii i ikh obobschenii”, Izv. RAN. Ser. matem., 82:4 (2018), 199–224 | DOI
[5] S. V. Konyagin, “O nepreryvnykh operatorakh obobschennogo ratsionalnogo priblizheniya”, Matem. zametki, 44:3 (1988), 404 | MR | Zbl
[6] E. D. Livshits, “Ob ustoichivosti operatora $\varepsilon$-proektsii na mnozhestvo splainov v prostranstve $C[0,1]$”, Izv. RAN. Ser. matem., 67:1 (2003), 99–130 | DOI | MR | Zbl
[7] E. D. Livshits, “O pochti nailuchshem priblizhenii kusochno-polinomialnymi funktsiyami v prostranstve $C[0,1]$”, Matem. zametki, 78:4 (2005), 629–633 | DOI | MR | Zbl
[8] K. S. Ryutin, “Nepreryvnost operatorov obobschennogo ratsionalnogo priblizheniya v prostranstve $L_1[0;1]$”, Matem. zametki, 73:1 (2003), 148–153 | DOI | MR | Zbl
[9] K. S. Ryutin, “Ravnomernaya nepreryvnost obobschennykh ratsionalnykh priblizhenii”, Matem. zametki, 71:2 (2002), 261–270 | DOI | MR | Zbl
[10] I. G. Tsarkov, “Nepreryvnaya $\varepsilon$-vyborka i monotonno lineino svyaznye mnozhestva”, Matem. zametki, 101:6 (2017), 919–931 | DOI | MR
[11] I. G. Tsarkov, “Nepreryvnaya $\varepsilon$-vyborka”, Matem. sb., 207:2 (2016), 123–142 | DOI | MR | Zbl
[12] I. G. Tsarkov, “Novye kriterii suschestvovaniya nepreryvnoi $\varepsilon$-vyborki”, Matem. zametki, 104:5 (2018), 745–754 | DOI
[13] I. G. Tsarkov, “Slabo monotonnye mnozhestva i nepreryvnaya vyborka iz operatora pochti nailuchshego priblizheniya”, Garmonicheskii analiz, teoriya priblizhenii i teoriya chisel, Tr. MIAN, 303, MAIK «Nauka/Interperiodika», M., 2018, 246–257 | DOI
[14] I. G. Tsarkov, “Svoistva mnozhestv, obladayuschikh nepreryvnoi vyborkoi iz operatora $P^\delta$”, Matem. zametki, 48:4 (1990), 122–131 | MR | Zbl
[15] I. G. Tsarkov, “Svoistva mnozhestv, obladayuschikh ustoichivoi $\varepsilon$-vyborkoi”, Matem. zametki, 89:4 (2011), 608–613 | DOI | MR