The Definition of a Self-Similar Function in Quasi-Banach Spaces
Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 917-923.

Voir la notice de l'article provenant de la source Math-Net.Ru

The definition of a self-similar function is extended to quasi-Banach Lebesgue spaces. A sufficient condition for a function with given self-similarity parameters to lie in some such space is given.
Keywords: self-similar function
Mots-clés : quasi-Banach Lebesgue space.
@article{MZM_2019_106_6_a11,
     author = {Yu. V. Tikhonov},
     title = {The {Definition} of a {Self-Similar} {Function} in {Quasi-Banach} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {917--923},
     publisher = {mathdoc},
     volume = {106},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a11/}
}
TY  - JOUR
AU  - Yu. V. Tikhonov
TI  - The Definition of a Self-Similar Function in Quasi-Banach Spaces
JO  - Matematičeskie zametki
PY  - 2019
SP  - 917
EP  - 923
VL  - 106
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a11/
LA  - ru
ID  - MZM_2019_106_6_a11
ER  - 
%0 Journal Article
%A Yu. V. Tikhonov
%T The Definition of a Self-Similar Function in Quasi-Banach Spaces
%J Matematičeskie zametki
%D 2019
%P 917-923
%V 106
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a11/
%G ru
%F MZM_2019_106_6_a11
Yu. V. Tikhonov. The Definition of a Self-Similar Function in Quasi-Banach Spaces. Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 917-923. http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a11/

[1] I. A. Sheipak, “O konstruktsii i nekotorykh svoistvakh samopodobnykh funktsii v prostranstvakh $L_p[0,1]$”, Matem. zametki, 81:6 (2007), 924–938 | DOI | MR | Zbl

[2] P. Singer, P. Zajdler, “Self-affine fractal functions and wavelet series”, J. Math. Anal. Appl., 240:2 (1999), 518–551 | DOI | MR