Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_5_a5, author = {N. N. Nefedov and E. I. Nikulin}, title = {Existence and {Asymptotic} {Stability} of {Periodic} {Two-Dimensional} {Contrast} {Structures} in the {Problem} with {Weak} {Linear} {Advection}}, journal = {Matemati\v{c}eskie zametki}, pages = {708--722}, publisher = {mathdoc}, volume = {106}, number = {5}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a5/} }
TY - JOUR AU - N. N. Nefedov AU - E. I. Nikulin TI - Existence and Asymptotic Stability of Periodic Two-Dimensional Contrast Structures in the Problem with Weak Linear Advection JO - Matematičeskie zametki PY - 2019 SP - 708 EP - 722 VL - 106 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a5/ LA - ru ID - MZM_2019_106_5_a5 ER -
%0 Journal Article %A N. N. Nefedov %A E. I. Nikulin %T Existence and Asymptotic Stability of Periodic Two-Dimensional Contrast Structures in the Problem with Weak Linear Advection %J Matematičeskie zametki %D 2019 %P 708-722 %V 106 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a5/ %G ru %F MZM_2019_106_5_a5
N. N. Nefedov; E. I. Nikulin. Existence and Asymptotic Stability of Periodic Two-Dimensional Contrast Structures in the Problem with Weak Linear Advection. Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 708-722. http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a5/
[1] P. Hess, Periodic–Parabolic Boundary Value Problems and Positivity, Pitman Res. Notes Math. Ser., 247, Longman Sci. Tech., Harlow, 1991 | MR | Zbl
[2] H. Amann, “Periodic solutions of semilinear parabolic equations”, Nonlinear Analysis, Academic Press, New York, 1978, 1–29 | MR
[3] R. Kannan, V. Lakshmikantham, “Existence of periodic solutions of semilinear parabolic equations and the method of upper and lower solutions”, J. Math. Anal. Appl., 97:1 (1983), 291–299 | DOI | MR | Zbl
[4] N. N. Nefedov, L. Recke, K. R. Schneider, “Existence and asymptotic stability of periodic solutions with an interior layer of reaction-advection-diffusion equations”, J. Math. Anal. Appl., 405:1 (2013), 90–103 | DOI | MR | Zbl
[5] E. N. Dancer, P. Hess, “Behaviour of a semi-linear periodic-parabolic problem when a parameter is small”, Functional-Analytic Methods for Partial Differential Equations, Lecture Notes in Math., 1450, Springer-Verlag, Berlin, 1990, 12–19 | DOI | MR
[6] N. D. Alikakos, P. W. Bates, X. Chen, “Periodic traveling waves and locating oscillating patterns in multidimensional domains”, Trans. Amer. Math. Soc., 351:7 (1999), 2777–2805 | DOI | MR | Zbl
[7] N. T. Levashova, O. A. Nikolaeva, A. D. Pashkin, “Modelirovanie raspredeleniya temperatury na granitse razdela voda-vozdukh s ispolzovaniem teorii kontrastnykh struktur”, Vestn. Mosk. un-ta. Ser. 3. Fiz. Astron., 2015, no. 5, 12–16
[8] N. N. Nefedov, E. I. Nikulin, “Suschestvovanie i asimptoticheskaya ustoichivost periodicheskogo resheniya s vnutrennim perekhodnym sloem v zadache so slaboi lineinoi advektsiei”, Model. i analiz inform. sistem, 25:1 (2018), 125–132 | DOI
[9] N. N. Nefedov, E. I. Nikulin, “Existence and asymptotic stability of periodic solutions of the reaction–diffusion equations in the case of a rapid reaction”, Russ. J. Math. Phys., 25:1 (2018), 88–101 | DOI | MR | Zbl
[10] N. N. Nefedov, “Abstraktnye evolyutsionnye differentsialnye uravneniya s razryvnymi operatornymi koeffitsientami”, Differents. uravneniya, 31:7 (1995), 1132–1141 | MR | Zbl
[11] N. N. Nefedov, K. Sakamoto, “Multi-dimensional stationary internal layers for spatially inhomogeneous reaction-diffusion equations with balanced nonlinearity”, Hiroshima Math. J., 33:3 (2003), 391–432 | DOI | MR | Zbl
[12] N. N. Nefedov, M. A. Davydova, “Contrast structures in singularly perturbed quasilinear reaction-diffusion-advection equations”, Differ. Equ., 49:6 (2013), 688–706 | DOI | MR | Zbl
[13] P. C. Fife, M. M. Tang, “Comparison principles for reaction-diffusion systems: irregular comparison functions and applications to questions of stability and speed of propagation of disturbances”, J. Differential Equations, 40:2 (1981), 168–185 | DOI | MR | Zbl
[14] A. B. Vasileva, M. A. Davydova, “O kontrastnoi strukture tipa stupenki dlya odnogo klassa nelineinykh singulyarno vozmuschennykh uravnenii vtorogo poryadka”, Zh. vychisl. matem. i matem. fiz., 38:6 (1998), 938–947 | MR | Zbl
[15] N. N. Nefedov, “Metod differentsialnykh neravenstv dlya nekotorykh singulyarno vozmuschennykh zadach v chastnykh proizvodnykh”, Differents. uravneniya, 31:4 (1995), 719–722 | MR | Zbl
[16] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR | Zbl
[17] A. B. Vasileva, V. F. Butuzov, N. N. Nefedov, “Singulyarno vozmuschennye zadachi s pogranichnymi i vnutrennimi sloyami”, Differentsialnye uravneniya i topologiya. I, Tr. MIAN, 268, MAIK «Nauka/Interperiodika», M., 2010, 268–283 | MR | Zbl
[18] H. Amann, “Periodic solutions of semilinear parabolic equations”, Nonlinear Analysis, Academic Press, New York, 1978, 1–29 | MR
[19] M. A. Davydova, “Suschestvovanie i ustoichivost reshenii s pogranichnymi sloyami v mnogomernykh singulyarno vozmuschennykh zadachakh reaktsiya-diffuziya-advektsiya”, Matem. zametki, 98:6 (2015), 853–864 | DOI | MR | Zbl
[20] N. N. Nefedov, E. I. Nikulin, “Existence and stability of periodic contrast structures in the reaction-advection-diffusion problem”, Russ. J. Math. Phys., 22:2 (2015), 215–226 | DOI | MR | Zbl