Density of Sums of Shifts of a Single Function in Hardy Spaces on the Half-Plane
Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 669-678.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that there exists a function defined in the closed upper half-plane for which the sums of its real shifts are dense in all Hardy spaces $H_{p}$ for $2 \le p \infty$, as well as in the space of functions analytic in the upper half-plane, continuous on its closure, and tending to zero at infinity.
Keywords: approximation, sums of shifts, density, Hardy spaces.
@article{MZM_2019_106_5_a2,
     author = {N. A. Dyuzhina},
     title = {Density of {Sums} of {Shifts} of a {Single} {Function} in {Hardy} {Spaces} on the {Half-Plane}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {669--678},
     publisher = {mathdoc},
     volume = {106},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a2/}
}
TY  - JOUR
AU  - N. A. Dyuzhina
TI  - Density of Sums of Shifts of a Single Function in Hardy Spaces on the Half-Plane
JO  - Matematičeskie zametki
PY  - 2019
SP  - 669
EP  - 678
VL  - 106
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a2/
LA  - ru
ID  - MZM_2019_106_5_a2
ER  - 
%0 Journal Article
%A N. A. Dyuzhina
%T Density of Sums of Shifts of a Single Function in Hardy Spaces on the Half-Plane
%J Matematičeskie zametki
%D 2019
%P 669-678
%V 106
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a2/
%G ru
%F MZM_2019_106_5_a2
N. A. Dyuzhina. Density of Sums of Shifts of a Single Function in Hardy Spaces on the Half-Plane. Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 669-678. http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a2/

[1] P. A. Borodin, S. V. Konyagin, “Convergence to zero of exponential sums with positive integer coefficients and approximation by sums of shifts of a single function on the line”, Anal. Math., 44:2 (2018), 163–183 | DOI | MR | Zbl

[2] P. Kusis, Vvedenie v teoriyu prostranstv $H^p$ s prilozheniem dokazatelstva Volffa teoremy o korone, Mir, M., 1984 | MR | Zbl

[3] Dzh. Garnett, Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[4] E. Ch. Titchmarsh, Vvedenie v teoriyu integralov Fure, GITTL, L., 1948 | MR

[5] Dzh. Metyuz, R. Uoker, Matematicheskie metody fiziki, Atomizdat, M., 1972 | MR

[6] P. A. Borodin, “Plotnost polugruppy v banakhovom prostranstve”, Izv. RAN. Ser. matem., 78:6 (2014), 21–48 | DOI | MR | Zbl

[7] S. Banakh, Teoriya lineinykh operatsii, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2001