Density of Sums of Shifts of a Single Function in Hardy Spaces on the Half-Plane
Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 669-678
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that there exists a function defined in the closed upper half-plane for which the sums of its real shifts are dense in all Hardy spaces $H_{p}$ for $2 \le p \infty$, as well as in the space of functions analytic in the upper half-plane, continuous on its closure, and tending to zero at infinity.
Keywords:
approximation, sums of shifts, density, Hardy spaces.
@article{MZM_2019_106_5_a2,
author = {N. A. Dyuzhina},
title = {Density of {Sums} of {Shifts} of a {Single} {Function} in {Hardy} {Spaces} on the {Half-Plane}},
journal = {Matemati\v{c}eskie zametki},
pages = {669--678},
publisher = {mathdoc},
volume = {106},
number = {5},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a2/}
}
N. A. Dyuzhina. Density of Sums of Shifts of a Single Function in Hardy Spaces on the Half-Plane. Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 669-678. http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a2/