On an Inverse Problem for the KdV Equation with Variable Coefficient
Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 788-792
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
waves on shallow water, stationary solution, Hamiltonian formalism
Mots-clés : adiabatic invariant.
Mots-clés : adiabatic invariant.
@article{MZM_2019_106_5_a11,
author = {A. V. Baev},
title = {On an {Inverse} {Problem} for the {KdV} {Equation} with {Variable} {Coefficient}},
journal = {Matemati\v{c}eskie zametki},
pages = {788--792},
year = {2019},
volume = {106},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a11/}
}
A. V. Baev. On an Inverse Problem for the KdV Equation with Variable Coefficient. Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 788-792. http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a11/
[1] A. V. Aksenov, S. Yu. Dobrokhotov, K. P. Druzhkov, Matem. zametki, 104:6 (2018), 930–936 | DOI | Zbl
[2] S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. A. Tolchennikov, Matem. zametki, 101:5 (2017), 700–715 | DOI | MR | Zbl
[3] Yu. A. Chirkunov, S. Yu. Dobrokhotov, S. B. Medvedev, D. S. Minenkov, TMF, 178:3 (2014), 322–345 | DOI | MR | Zbl
[4] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | MR | Zbl
[5] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Springer-Verlag, Berlin, 2006 | MR | Zbl
[6] A. Newell, Solitons in Mathematics and Physics, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1985 | MR | Zbl