On Some Classes of Nonlocal Boundary-Value Problems for Singular Parabolic Equations
Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 578-594.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the solvability of nonlocal boundary-value problems for singular parabolic equations of higher order in which the coefficient of the time derivative belongs to a space $L_{p}$ of spatial variables and possesses a certain smoothness with respect to time. No constraints are imposed on the sign of this coefficient, i.e., the class of equations also contains parabolic equations with varying time direction. We obtain conditions guaranteeing the solvability of boundary-value problems in weighted Sobolev spaces and the uniqueness of the solutions.
Keywords: parabolic operators, parabolic equations with varying time direction, nonlocal boundary-value problems, uniqueness.
Mots-clés : existence of solutions
@article{MZM_2019_106_4_a8,
     author = {S. G. Pyatkov},
     title = {On {Some} {Classes} of {Nonlocal} {Boundary-Value} {Problems} for {Singular} {Parabolic} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {578--594},
     publisher = {mathdoc},
     volume = {106},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a8/}
}
TY  - JOUR
AU  - S. G. Pyatkov
TI  - On Some Classes of Nonlocal Boundary-Value Problems for Singular Parabolic Equations
JO  - Matematičeskie zametki
PY  - 2019
SP  - 578
EP  - 594
VL  - 106
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a8/
LA  - ru
ID  - MZM_2019_106_4_a8
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%T On Some Classes of Nonlocal Boundary-Value Problems for Singular Parabolic Equations
%J Matematičeskie zametki
%D 2019
%P 578-594
%V 106
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a8/
%G ru
%F MZM_2019_106_4_a8
S. G. Pyatkov. On Some Classes of Nonlocal Boundary-Value Problems for Singular Parabolic Equations. Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 578-594. http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a8/

[1] M. Gevrey, “Sur les équations aux dérivées partielles du type parabolique”, C. R., 152 (1911), 428–431 | Zbl

[2] M. Gevrey, “Sur les équations aux dérivées partielles du type parabolique (suite)”, Journ. de Math. (6), 10 (1914), 105–148 | Zbl

[3] W. Bothe, “Die Streueabsorption der Electronenstronenstrahlen”, Z. Phys., 5 (1929), 101–178

[4] C. Cercignani, Mathematical Methods in Kinetic Theory, Plenum Press, New York, 1969 | MR | Zbl

[5] R. Beals, V. Protopescu, “Half-range completeness for the Fokker–Planck equation”, J. Statist. Phys., 32:3 (1983), 565–584 | DOI | MR | Zbl

[6] C. Knessel, J. B. Keller, “Ray solutions of forward-backward parabolic problems for data-handling systems”, European J. Appl. Math., 11:1 (2000), 1–12 | DOI | MR

[7] V. N. Monakhov, “Vstrechnye techeniya v pogranichnom sloe”, Dinamika sploshnoi sredy, 113, In-t gidrodinamiki SO RAN, Novosibirsk, 1998, 107–113

[8] R. J. Hangelbroek, “Linear analysis and solution of neutron transport problem”, Transport Theory Statist. Phys., 5:1 (1976), 1–85 | DOI | MR | Zbl

[9] K. Latrach, “Compactness properties for linear transport operator with abstract boundary conditions in slab geometry”, Transport Theory Statist. Phys., 22:1 (1993), 39–64 | DOI | MR | Zbl

[10] K. Latrach, M. Mokhtar-Kharroubi, “Spectral analysis and generation results for streaming operator with multiplying boundary conditions”, Positivity, 3:3 (1999), 273–296 | DOI | MR | Zbl

[11] G. Webb, “On an unbounded linear operator arizing in the theory of growing cell population with inherited cycle length”, J. Math. Biol., 23:2 (1986), 269–282 | DOI | MR | Zbl

[12] N. A. Larkin, V. A. Novikov, N. N. Yanenko, Nelineinye uravneniya peremennogo tipa, Nauka, Novosibirsk, 1983 | MR | Zbl

[13] S. V. Popov, V. G. Markov, “Boundary value problems for parabolic equations of high order with a changing time direction”, J. Phys. Conf. Ser., 894:1 (2017), 012075 | DOI

[14] S. V. Popov, S. V. Potapova, “Gelderovskie klassy reshenii 2n-parabolicheskikh uravnenii s menyayuschimsya napravleniem evolyutsii”, Dokl. AN, 424:5 (2009), 594–596 | Zbl

[15] S. A. Tersenov, Parabolicheskie uravneniya s menyayuschimsya napravleniem vremeni, Nauka, M., 1985 | MR | Zbl

[16] M. S. Baouendi, P. Grisvard, “Sur une equation d'evolution changeante de type”, J. Funct. Anal., 2:3 (1968), 352–367 | DOI | MR | Zbl

[17] C. D. Pagani, “On the parabolic equation $\operatorname{sgn}(x)|x|^p u_y-u_{xx}=0$”, Ann. Mat. Pura Appl. (4), 99:1 (1974), 333–399 | DOI | MR | Zbl

[18] L. Boulton, M. Marletta, D. Rule, “On the stability of a forward-backward heat equation”, Integral Equations and Operator Theory, 73:2 (2012), 195–216 | DOI | MR | Zbl

[19] S. G. Pyatkov, “O razreshimosti odnoi kraevoi zadachi dlya parabolicheskogo uravneniya s menyayuschimsya napravleniem vremeni”, Dokl. AN SSSR, 285:6 (1985), 1327–1329 | MR | Zbl

[20] K. Hollig, “Existence of infinitely many solutions for a forward backward heat equation”, Trans. Amer. Math. Soc., 278:1 (1987), 299–316 | DOI | MR

[21] P. I. Plotnikov, “Uravneniya s peremennym napravleniem vremeni i effekt gisterezisa”, Dokl. AN, 330:6 (1987), 691–693

[22] I. V. Kuznetsov, “Entropiinye resheniya differentsialnogo uravneniya vtorogo poryadka s peremennym napravleniem parabolichnosti”, Sib. matem. zhurn., 46:3 (2005), 594–619 | MR | Zbl

[23] I. V. Kuznetsov, S. A. Sazhenkov, “Quasi-solutions of genuinely nonlinear forward-backward ultra-parabolic equations”, J. Phys. Conf. Ser., 894:1 (2017), 012046 | DOI

[24] B. T. Thanh, F. Smarrazzo, A. Tesei, “Sobolev regularization of a class of forward-backward parabolic equations”, J. Differential Equations, 257:5 (2014), 1403–1456 | DOI | MR | Zbl

[25] A. Terracina, Two-Phase Entropy Solutions of Forward-Backward Parabolic Problems with Unstable Phase, 2013, arXiv: 1310.7728

[26] M. Bertsch, F. Smarrazzo, A. Tesei, “On a class of forward-backward parabolic equations: properties of solutions”, SIAM J. Math. Anal., 49:3 (2017), 2037–2060 | DOI | MR | Zbl

[27] M. Bertsch, F. Smarrazzo, A. Tesei, “Pseudo-parabolic regularization of forward-backward parabolic equations: power-type nonlinearities”, J. Reine Angew. Math., 712 (2016), 51–80 | DOI | MR | Zbl

[28] S. Kim, B. Yan, “On Lipschitz solutions for some forward-backward parabolic equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35:1 (2018), 65–100 | DOI | MR | Zbl

[29] L. C. Evans, M. Portilheiro, “Irreversibility and hysteresis for a forward-backward diffusion equation”, Math. Models Methods Appl. Sci., 14:11 (2004), 1599–1620 | DOI | MR | Zbl

[30] S. N. Antontsev, I. V. Kuznetsov, “Singular perturbations of forward-backward $p$-parabolic equations”, J. Elliptic Parabol. Equ., 2:1-2 (2016), 357–370 | MR | Zbl

[31] E. Bonetti, P. Colli, G. Tomassetti, “A non-smooth regularization of a forward-backward parabolic equations”, Math. Models Methods Appl. Sci., 27:4 (2017), 641–661 | DOI | MR | Zbl

[32] M. Chugunova, S. Pyatkov, “Compactly supported solutions for a rimming flow model”, Nonlinearity, 27:4 (2014), 803–822 | DOI | MR | Zbl

[33] W. Greenberg, C. V. M. Van der Mee, P. F. Zweifel, “Generalized kinetic equations”, Integral Equations Operator Theory, 7:1 (1984), 60–95 | DOI | MR | Zbl

[34] W. Greenberg, C. V. M. Van der Mee, V. Protopopescu, Boundary Value Problems in Abstract Kinetic Theory, Oper. Theory Adv. Appl., 23, Birkhäuser Verlag, Basel, 1987 | MR | Zbl

[35] R. Beals, “An abstract treatment of some forward-backward problems of transport and scattering”, J. Funct. Anal., 34:1 (1984), 1–20 | DOI | MR

[36] N. V. Kislov, “Neodnorodnye kraevye zadachi dlya differentsialno-operatornykh uravnenii smeshannogo tipa i ikh prilozhenie”, Matem. sb., 125 (167):1 (9) (1984), 19–37 | MR | Zbl

[37] I. M. Karabash, “Abstract kinetic equations with positive collision operators”, Spectral Theory in Inner Product Spaces and Applications, Oper. Theory Adv. Appl., 188, Birkhäuser Verlag, Basel, 2008, 175–195 | MR

[38] S. Pyatkov, S. Popov, V. Antipin, “On solvability of boundary value problems for kinetic operator-differential equations”, Integral Equations Operator Theory, 80:4 (2014), 557–580 | DOI | MR | Zbl

[39] I. E. Egorov, S. G. Pyatkov, S. V. Popov, Neklassicheskie operatorno-differentsialnye uravneniya, Nauka, Novosibirsk, 2000 | MR

[40] N. L. Abasheeva, “Razreshimost periodicheskoi kraevoi zadachi dlya operatorno-differentsialnogo uravneniya smeshannogo tipa”, Vestn. NGU. Ser. Matem., mekh., inform., 1:2 (2001), 3–18 | Zbl

[41] S. G. Pyatkov, “Kraevye zadachi dlya nekotorykh klassov singulyarnykh parabolicheskikh uravnenii”, Matem. tr., 6:2 (2003), 144–208 | MR | Zbl

[42] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Publ., Amsterdam, 1978 | MR | Zbl

[43] H. Amann, “Compact embeddings of vector-valued Sobolev and Besov spaces”, Glas. Mat. Ser. III, 35 (55):1 (2000), 161–177 | MR | Zbl

[44] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR | Zbl

[45] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR | Zbl

[46] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR | Zbl

[47] J.-L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, Berlin, 1972 | MR