On Some Classes of Nonlocal Boundary-Value Problems for Singular Parabolic Equations
Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 578-594

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the solvability of nonlocal boundary-value problems for singular parabolic equations of higher order in which the coefficient of the time derivative belongs to a space $L_{p}$ of spatial variables and possesses a certain smoothness with respect to time. No constraints are imposed on the sign of this coefficient, i.e., the class of equations also contains parabolic equations with varying time direction. We obtain conditions guaranteeing the solvability of boundary-value problems in weighted Sobolev spaces and the uniqueness of the solutions.
Keywords: parabolic operators, parabolic equations with varying time direction, nonlocal boundary-value problems, uniqueness.
Mots-clés : existence of solutions
@article{MZM_2019_106_4_a8,
     author = {S. G. Pyatkov},
     title = {On {Some} {Classes} of {Nonlocal} {Boundary-Value} {Problems} for {Singular} {Parabolic} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {578--594},
     publisher = {mathdoc},
     volume = {106},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a8/}
}
TY  - JOUR
AU  - S. G. Pyatkov
TI  - On Some Classes of Nonlocal Boundary-Value Problems for Singular Parabolic Equations
JO  - Matematičeskie zametki
PY  - 2019
SP  - 578
EP  - 594
VL  - 106
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a8/
LA  - ru
ID  - MZM_2019_106_4_a8
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%T On Some Classes of Nonlocal Boundary-Value Problems for Singular Parabolic Equations
%J Matematičeskie zametki
%D 2019
%P 578-594
%V 106
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a8/
%G ru
%F MZM_2019_106_4_a8
S. G. Pyatkov. On Some Classes of Nonlocal Boundary-Value Problems for Singular Parabolic Equations. Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 578-594. http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a8/