Norms of the Positive Powers of the Bessel Operator in the Spaces of Even Schl\"omilch j-Polynomials
Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 549-564.

Voir la notice de l'article provenant de la source Math-Net.Ru

The definition of a $B$-derivative is based on the notion of generalized Poisson shift; this derivative coincides, up to a constant, with the singular Bessel differential operator. We introduce the fractional powers of a $B$-derivative by analogy with fractional Marchaud and Weyl derivatives. We prove statements on the coincidence of these derivatives for the classes of even smooth integrable functions. We obtain analogs of Bernstein's inequality for $B$-derivatives of integer and fractional order in the space of even Schlömilch j-polynomials with sup-norm and $L_p^\gamma$-norm (the Lebesgue norm with power weight $x^\gamma$, $\gamma>0$). The resulting estimates are sharp and define the norms of powers of the Bessel operator in the spaces of even Schlömilch j-polynomials.
Keywords: Bessel j-function, generalized Poisson shift, and Weyl fractional derivatives, Bernstein's inequality, Bernstein–Zygmund inequality, operator norm.
Mots-clés : Liouville, Marchaud, Schlömilch polynomial, Riesz interpolation formula
@article{MZM_2019_106_4_a6,
     author = {L. N. Lyakhov and E. Sanina},
     title = {Norms of the {Positive} {Powers} of the {Bessel} {Operator} in the {Spaces} of {Even} {Schl\"omilch} {j-Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {549--564},
     publisher = {mathdoc},
     volume = {106},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a6/}
}
TY  - JOUR
AU  - L. N. Lyakhov
AU  - E. Sanina
TI  - Norms of the Positive Powers of the Bessel Operator in the Spaces of Even Schl\"omilch j-Polynomials
JO  - Matematičeskie zametki
PY  - 2019
SP  - 549
EP  - 564
VL  - 106
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a6/
LA  - ru
ID  - MZM_2019_106_4_a6
ER  - 
%0 Journal Article
%A L. N. Lyakhov
%A E. Sanina
%T Norms of the Positive Powers of the Bessel Operator in the Spaces of Even Schl\"omilch j-Polynomials
%J Matematičeskie zametki
%D 2019
%P 549-564
%V 106
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a6/
%G ru
%F MZM_2019_106_4_a6
L. N. Lyakhov; E. Sanina. Norms of the Positive Powers of the Bessel Operator in the Spaces of Even Schl\"omilch j-Polynomials. Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 549-564. http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a6/

[1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[2] B. M. Levitan, “Razlozhenie po funktsiyam Besselya v ryady i integraly Fure”, UMN, 6:2 (42) (1951), 102–143 | MR | Zbl

[3] I. A. Kipriyanov, Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1997 | MR

[4] G. N. Vatson, Teoriya besselevykh funktsii, Ch. 1, IL, M., 1949 | MR | Zbl

[5] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR | Zbl

[6] I. A. Kipriyanov, “Drobnaya proizvodnaya i teoremy vlozheniya”, Dokl. AN SSSR, 126:6 (1959), 1187–1190 | Zbl

[7] I. A. Kipriyanov, “Ob odnom operatore, porozhdennom preobrazovaniem Fure–Besselya”, Sib. matem. zhurn., 8:3 (1967), 601–620 | MR | Zbl

[8] I. A. Kipriyanov, “Preobrazovanie Fure–Besselya i teoremy vlozheniya dlya vesovykh klassov”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 2, Tr. MIAN SSSR, 89, 1967, 130–213 | Zbl

[9] L. N. Lyakhov, E. L. Sanina, “Interpolation formulas for integral operations of weighted plane wave type”, J. Math. Sci. (N.Y.), 216:2 (2016), 107–112 | Zbl

[10] L. N. Lyakhov, “Postroenie yader Dirikhle i Valle-Pussena–Nikolskogo dlya j-besselevykh integralov Fure”, Tr. MMO, 76, no. 1, MTsNMO, M., 2015, 67–84

[11] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, GIFML, M., 1963 | MR

[12] V. V. Katrakhov, L. N. Lyakhov, “Polnoe preobrazovanie Fure–Besselya i algebra singulyarnykh psevdodifferentsialnykh operatorov”, Differents. uravneniya, 47:5 (2011), 681–695 | MR | Zbl

[13] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR