On Extrapolation of Polynomials with Real Coefficients to the Complex Plane
Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 543-548
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of the greatest possible absolute value of the $k$th derivative of an algebraic polynomial of order $n>k$ with real coefficients at a given point of the complex plane is considered. It is assumed that the polynomial is bounded by $1$ on the interval $[-1,1]$. It is shown that the solution is attained for the polynomial $\kappa\cdot T_\sigma$, where $T_\sigma$ is one of the Zolotarev or Chebyshev polynomials and $\kappa$ is a number.
Mots-clés :
extrapolation, alternance, Zolotarev polynomial
Keywords: dual problem.
Keywords: dual problem.
@article{MZM_2019_106_4_a5,
author = {A. S. Kochurov and V. M. Tikhomirov},
title = {On {Extrapolation} of {Polynomials} with {Real} {Coefficients} to the {Complex} {Plane}},
journal = {Matemati\v{c}eskie zametki},
pages = {543--548},
publisher = {mathdoc},
volume = {106},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a5/}
}
TY - JOUR AU - A. S. Kochurov AU - V. M. Tikhomirov TI - On Extrapolation of Polynomials with Real Coefficients to the Complex Plane JO - Matematičeskie zametki PY - 2019 SP - 543 EP - 548 VL - 106 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a5/ LA - ru ID - MZM_2019_106_4_a5 ER -
A. S. Kochurov; V. M. Tikhomirov. On Extrapolation of Polynomials with Real Coefficients to the Complex Plane. Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 543-548. http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a5/