Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_4_a3, author = {R. M. Gadzhimirzaev}, title = {Estimate of the {Lebesgue} {Function} of {Fourier} {Sums} in {Terms} of {Modified} {Meixner} {Polynomials}}, journal = {Matemati\v{c}eskie zametki}, pages = {519--530}, publisher = {mathdoc}, volume = {106}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a3/} }
TY - JOUR AU - R. M. Gadzhimirzaev TI - Estimate of the Lebesgue Function of Fourier Sums in Terms of Modified Meixner Polynomials JO - Matematičeskie zametki PY - 2019 SP - 519 EP - 530 VL - 106 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a3/ LA - ru ID - MZM_2019_106_4_a3 ER -
R. M. Gadzhimirzaev. Estimate of the Lebesgue Function of Fourier Sums in Terms of Modified Meixner Polynomials. Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 519-530. http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a3/
[1] I. I. Sharapudinov, Mnogochleny, ortogonalnye na setkakh, Makhachkala, Izd-vo Dagestanskogo gos. ped. un-ta, 1997
[2] R. M. Gadzhimirzaev, “Approximative properties of Fourier-Meixner sums”, Probl. Anal. Issues Anal., 7(25):1 (2018), 23–40 | DOI | MR
[3] Z. D. Gadzhieva, Smeshannye ryady po polinomam Meiksnera, Dis. $\dots$ kand. fiz.-matem. nauk, Saratovskii gos. un-t, Saratov, 2004
[4] A. F. Nikiforov, S. K. Suslov, V. B. Uvarov, Klassicheskie ortogonalnye mnogochleny diskretnoi peremennoi, M., Nauka, 1985 | MR
[5] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1974 | MR | Zbl
[6] R. M. Gadzhimirzaev, “Priblizhenie funktsii, zadannykh na setke $\{0, \delta, 2\delta, \ldots\}$ summami Fure-Meiksnera”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 61–65 | DOI