Estimate of the Lebesgue Function of Fourier Sums in Terms of Modified Meixner Polynomials
Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 519-530
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to the study of the approximation properties of Fourier sums in terms of the modified Meixner polynomials $m_{n,N}^\alpha(x)$, $n=0,1,\dots$, which generate, for $\alpha>-1$, an orthonormal system on the grid $\Omega_\delta=\{0,\delta,2\delta,\dots\}$ with weight
$$
\rho_N(x)=e^{-x}\frac{\Gamma(Nx+\alpha+1)}{\Gamma(Nx+1)} (1-e^{-\delta})^{\alpha+1},\qquad \text{where}\quad \delta=\frac{1}{N},\quad N\ge 1.
$$
The main attention is paid to the derivation of a pointwise estimate for the Lebesgue function $\lambda_{n,N}^\alpha(x)$ of Fourier sums in terms of the modified Meixner polynomials for $x\in[\theta_n/2,\infty)$ and $\theta_n=4n+2\alpha+2$.
Keywords:
Meixner polynomials, Fourier series
Mots-clés : Lebesgue function.
Mots-clés : Lebesgue function.
@article{MZM_2019_106_4_a3,
author = {R. M. Gadzhimirzaev},
title = {Estimate of the {Lebesgue} {Function} of {Fourier} {Sums} in {Terms} of {Modified} {Meixner} {Polynomials}},
journal = {Matemati\v{c}eskie zametki},
pages = {519--530},
publisher = {mathdoc},
volume = {106},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a3/}
}
TY - JOUR AU - R. M. Gadzhimirzaev TI - Estimate of the Lebesgue Function of Fourier Sums in Terms of Modified Meixner Polynomials JO - Matematičeskie zametki PY - 2019 SP - 519 EP - 530 VL - 106 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a3/ LA - ru ID - MZM_2019_106_4_a3 ER -
R. M. Gadzhimirzaev. Estimate of the Lebesgue Function of Fourier Sums in Terms of Modified Meixner Polynomials. Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 519-530. http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a3/