Maslov's Canonical Operator in Problems on Localized Asymptotic Solutions of Hyperbolic Equations and Systems
Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 424-435.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analog of Maslov's canonical operator is defined for functions localized in a neighborhood of subsets of positive codimension.
Keywords: hyperbolic equation, hyperbolic system, localized solution, Maslov's canonical operator.
@article{MZM_2019_106_3_a8,
     author = {V. E. Nazaikinskii and A. I. Shafarevich},
     title = {Maslov's {Canonical} {Operator} in {Problems} on {Localized} {Asymptotic} {Solutions} of {Hyperbolic} {Equations} and {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {424--435},
     publisher = {mathdoc},
     volume = {106},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a8/}
}
TY  - JOUR
AU  - V. E. Nazaikinskii
AU  - A. I. Shafarevich
TI  - Maslov's Canonical Operator in Problems on Localized Asymptotic Solutions of Hyperbolic Equations and Systems
JO  - Matematičeskie zametki
PY  - 2019
SP  - 424
EP  - 435
VL  - 106
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a8/
LA  - ru
ID  - MZM_2019_106_3_a8
ER  - 
%0 Journal Article
%A V. E. Nazaikinskii
%A A. I. Shafarevich
%T Maslov's Canonical Operator in Problems on Localized Asymptotic Solutions of Hyperbolic Equations and Systems
%J Matematičeskie zametki
%D 2019
%P 424-435
%V 106
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a8/
%G ru
%F MZM_2019_106_3_a8
V. E. Nazaikinskii; A. I. Shafarevich. Maslov's Canonical Operator in Problems on Localized Asymptotic Solutions of Hyperbolic Equations and Systems. Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 424-435. http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a8/

[1] V. E. Nazaikinskii, A. I. Shafarevich, “Analog kanonicheskogo operatora Maslova dlya lokalizovannykh funktsii i ego prilozheniya k opisaniyu bystroubyvayuschikh asimptoticheskikh reshenii giperbolicheskikh uravnenii i sistem”, Dokl. AN, 479:6 (2018), 611–615 | DOI

[2] V. E. Nazaikinskii, V. G. Oshmyan, B. Yu. Sternin, V. E. Shatalov, “Integralnye operatory Fure i kanonicheskii operator”, UMN, 36:2 (218) (1981), 81–140 | MR | Zbl

[3] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[4] V. I. Arnold, “O kharakteristicheskom klasse, vkhodyaschem v usloviya kvantovaniya”, Funkts. analiz i ego pril., 1:1 (1967), 1–14 | MR | Zbl

[5] L. Khermander, Analiz lineinykh differentsialrykh operatorov s chastnymi proizvodnymi. T. 4. Integralnye operatory Fure, Mir, M., 1988 | MR

[6] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR | Zbl