On the Theory of Optimal Processes in Discrete Systems
Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 409-423.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, by introducing the notion of $\gamma$-convex set, we isolate a wider class of discrete control systems in which the global maximum principle holds. A new type of variation of control for such classes of discrete control systems is proposed and stronger global maximum principle and second-order optimality condition expressed in terms of a singular control of new type are obtained. Generalizing the notion of the relative interior of sets, we obtain an optimality condition for discrete systems in the form of an equality, which we call Pontryagin's equation.
Keywords: discrete maximum principle, $\gamma$-convex set, optimality conditions of second order.
@article{MZM_2019_106_3_a7,
     author = {M. D. Mardanov and T. K. Melikov and S. T. Melik},
     title = {On the {Theory} of {Optimal} {Processes} in {Discrete} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {409--423},
     publisher = {mathdoc},
     volume = {106},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a7/}
}
TY  - JOUR
AU  - M. D. Mardanov
AU  - T. K. Melikov
AU  - S. T. Melik
TI  - On the Theory of Optimal Processes in Discrete Systems
JO  - Matematičeskie zametki
PY  - 2019
SP  - 409
EP  - 423
VL  - 106
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a7/
LA  - ru
ID  - MZM_2019_106_3_a7
ER  - 
%0 Journal Article
%A M. D. Mardanov
%A T. K. Melikov
%A S. T. Melik
%T On the Theory of Optimal Processes in Discrete Systems
%J Matematičeskie zametki
%D 2019
%P 409-423
%V 106
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a7/
%G ru
%F MZM_2019_106_3_a7
M. D. Mardanov; T. K. Melikov; S. T. Melik. On the Theory of Optimal Processes in Discrete Systems. Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 409-423. http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a7/

[1] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969 | Zbl

[2] L. I. Rozonoer, “Printsip maksimuma L. S. Pontryagina v teorii optimalnykh sistem. III”, Avtomat. i telemekh., 20:12 (1959), 1561–1578 | MR

[3] A. G. Butkovskii, “O neobkhodimykh i dostatochnykh usloviyakh optimalnosti dlya impulsnykh sistem upravleniya”, Avtomat. i telemekh., 24:8 (1963), 1056–1064

[4] B. K. Jordan, E. Polak, “Theory of class of discrete optimal control system”, J. Electronics Control, 17:6 (1964), 697–711 | DOI | MR

[5] R. F. Gabasov, F. M. Kirillova, Kachestvennaya teoriya optimalnykh protsessov, Nauka, M., 1971 | MR

[6] B. N. Pshenichnyi, Neobkhodimye usloviya ekstremuma, Nauka, M., 1969 | MR

[7] A. I. Propoi, Elementy teorii optimalnykh diskretnykh protsessov, Nauka, M., 1973 | MR

[8] B. Sh. Mordukhovich, “Ob optimalnom upravlenii diskretnymi sistemami”, Differents. uravneniya, 9:4 (1973), 727–734 | MR | Zbl

[9] A. I. Propoi, “O printsipe maksimuma dlya diskretnykh sistem upravleniya”, Avtomat. i telemekh., 26:7 (1965), 1177–1187 | MR

[10] H. Halkin, “A maximum principle of the Pontryagin type for systems described by nonlinear difference equations”, SIAM J. Control, 4:1 (1966), 90–111 | DOI | MR

[11] J. M. Holtzman, “Convexity and the maximum principle for discrete systems”, IEEE Trans. Automatic Control, AC-11 (1966), 30–35 | MR

[12] R. F. Gabasov, F. M. Kirillova, “Neobkhodimye usloviya optimalnosti tipa ravenstva v diskretnykh sistemakh”, Differents. uravneniya, 9:3 (1973), 542–546 | MR | Zbl

[13] V. G. Boltyanskii, Optimalnoe upravlenie diskretnymi sistemami, Nauka, M., 1973 | MR

[14] L. I. Minchenko, “O neobkhodimykh usloviyakh optimalnosti dlya nekotorykh klassov diskretnykh sistem upravleniya”, Differents. uravneniya, 12:7 (1976), 1211–1218 | MR | Zbl

[15] A. Ya. Dubovitskii, “Diskretnyi printsip maksimuma”, Avtomat. i telemekh., 1978, no. 10, 55–71 | MR | Zbl

[16] R. B. Vinter, “Optimality and Sensitivity of Discrete Time Processes”, Control Cybernet., 17:2-3 (1988), 191–211 | MR

[17] A. J. Zazlovski, Stability of the turnpike phenomenon in discrete-time optimal control problems, Springer, Cham, 2014 | MR

[18] R. Gabasov, F. M. Kirillova, “K teorii neobkhodimykh uslovii optimalnosti dlya diskretnykh sistem”, Avtomat. i telemekh., 1969, no. 12, 39–47 | MR | Zbl

[19] L. T. Aschepkov, “K neobkhodimym usloviyam optimalnosti vysokogo poryadka dlya osobykh upravlenii diskretnykh sistem”, Differents. uravneniya, 8:10 (1972), 1857–1867 | MR

[20] S. Ya. Gorokhovik, “Neobkhodimye usloviya optimalnosti osobykh upravlenii v diskretnykh sistemakh s terminalnymi ogranicheniyami”, Izv. AN BSSR. Ser. fiz-matem. nauk, 1985, no. 3, 35–40 | MR

[21] M. J. Mardanov, T. K. Melikov, N. I. Mahmudov, “On necessary optimality conditions in discrete control systems”, Internat. J. Control, 88:10 (2015), 2097–2106 | DOI | MR

[22] Z. T. Mingaleeva, I. A. Shvartsman, “Neobkhodimye usloviya vtorogo poryadka dlya diskretnoi zadachi optimalnogo upravleniya”, Differents. uravneniya, 50:12 (2014), 1640–1646 | DOI

[23] M. J. Mardanov, T. K. Melikov, “A method for studying the optimality of controls in discrete systems”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 40:2 (2014), 5–13 | MR

[24] E. Steinitz, “Bedingt konvergente Reihen und konvexe Systeme”, J. Reine Angew. Math., 143 (1913), 128–176 | MR

[25] T. K. Melikov, K neobkhodimym usloviyam optimalnosti dlya sistem s raspredelennymi parametrami, Dep. v VINITI, No 2637-79, 1979

[26] A. V. Arutyunov, B. Marinkovich, “Neobkhodimye usloviya optimalnosti v diskretnoi zadache optimalnogo upravleniya”, Vestn. Mosk. un-ta. Ser. 15. Vychislit. matem. i kibernet., 2005, no. 1, 43–48

[27] R. Hilscher, V. Zeidan, “Discrete optimal control: second order optimality conditions”, J. Difference Equ. Appl., 8:10 (2002), 875–896 | DOI | MR

[28] B. Marinkovic, “Optimality conditions for discrete optimal control problems”, Optim. Methods Softw., 22:6 (2007), 959–969 | DOI | MR

[29] K. B. Mansimov, “Ob optimalnosti kvaziosobykh upravlenii v sistemakh Gursa–Darbu”, Differents. uravneniya, 22:11 (1986), 1952–1960 | MR

[30] M. Dzh. Mardanov, K. B. Mansimov, T. K. Melikov, Issledovanie osobykh upravlenii i neobkhodimye usloviya optimalnosti vtorogo poryadka v sistemakh s zapazdyvaniem, Izd-vo ELM, Baku, 2013