On the Theory of Optimal Processes in Discrete Systems
Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 409-423

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, by introducing the notion of $\gamma$-convex set, we isolate a wider class of discrete control systems in which the global maximum principle holds. A new type of variation of control for such classes of discrete control systems is proposed and stronger global maximum principle and second-order optimality condition expressed in terms of a singular control of new type are obtained. Generalizing the notion of the relative interior of sets, we obtain an optimality condition for discrete systems in the form of an equality, which we call Pontryagin's equation.
Keywords: discrete maximum principle, $\gamma$-convex set, optimality conditions of second order.
@article{MZM_2019_106_3_a7,
     author = {M. D. Mardanov and T. K. Melikov and S. T. Melik},
     title = {On the {Theory} of {Optimal} {Processes} in {Discrete} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {409--423},
     publisher = {mathdoc},
     volume = {106},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a7/}
}
TY  - JOUR
AU  - M. D. Mardanov
AU  - T. K. Melikov
AU  - S. T. Melik
TI  - On the Theory of Optimal Processes in Discrete Systems
JO  - Matematičeskie zametki
PY  - 2019
SP  - 409
EP  - 423
VL  - 106
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a7/
LA  - ru
ID  - MZM_2019_106_3_a7
ER  - 
%0 Journal Article
%A M. D. Mardanov
%A T. K. Melikov
%A S. T. Melik
%T On the Theory of Optimal Processes in Discrete Systems
%J Matematičeskie zametki
%D 2019
%P 409-423
%V 106
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a7/
%G ru
%F MZM_2019_106_3_a7
M. D. Mardanov; T. K. Melikov; S. T. Melik. On the Theory of Optimal Processes in Discrete Systems. Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 409-423. http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a7/