Blow-Up of Solutions to Semilinear Nonautonomous Wave Equations with Robin Boundary Conditions
Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 377-386.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the blow-up of solutions to the initial boundary value problem for a nonautonomous semilinear wave equation with damping and accelerating terms under the Robin boundary condition is studied. Sufficient conditions for the blow up in finite time of solutions to semilinear damped wave equations with arbitrary large initial energy are obtained. A result on the blow-up of solutions with negative initial energy to a semilinear second-order wave equation with an accelerating term is also obtained.
Keywords: Robin boundary condition, blow-up of solutions, concavity method.
@article{MZM_2019_106_3_a4,
     author = {J. Kalantarova},
     title = {Blow-Up of {Solutions} to {Semilinear} {Nonautonomous} {Wave} {Equations} with {Robin} {Boundary} {Conditions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {377--386},
     publisher = {mathdoc},
     volume = {106},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a4/}
}
TY  - JOUR
AU  - J. Kalantarova
TI  - Blow-Up of Solutions to Semilinear Nonautonomous Wave Equations with Robin Boundary Conditions
JO  - Matematičeskie zametki
PY  - 2019
SP  - 377
EP  - 386
VL  - 106
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a4/
LA  - ru
ID  - MZM_2019_106_3_a4
ER  - 
%0 Journal Article
%A J. Kalantarova
%T Blow-Up of Solutions to Semilinear Nonautonomous Wave Equations with Robin Boundary Conditions
%J Matematičeskie zametki
%D 2019
%P 377-386
%V 106
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a4/
%G ru
%F MZM_2019_106_3_a4
J. Kalantarova. Blow-Up of Solutions to Semilinear Nonautonomous Wave Equations with Robin Boundary Conditions. Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 377-386. http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a4/

[1] P. Weidemaier, “Existence of regular solutions for a quasilinear wave equation with the third boundary condition”, Math. Z., 191:3 (1986), 449–465 | DOI | MR

[2] S. I. Pokhozhaev, “Voprosy otsutstviya resheniya nelineinykh kraevykh zadach”, Trudy Vsesoyuznoi konferentsii po uravneniyam s chastnymi proizvodnymi, Izd-vo Mosk. un-ta, M., 1978, 200–203

[3] M. Tsutsumi, “On solutions of semilinear differential equations in a Hilbert space”, Math. Japon., 17 (1972), 173–193 | MR

[4] H. A. Levine, “Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+F(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | MR

[5] V. A. Galaktionov, S. I. Pohozaev, “Blow-up and critical exponents for nonlinear hyperbolic equations”, Nonlinear Anal., 53:3-4 (2003), 453–466 | DOI | MR

[6] M. O. Korpusov, A. V. Ovchinnikov, A. G. Sveshnikov, E. V. Yushkov, Blow-Up in Nonlinear Equations of Mathematical Physics. Theory and Methods, De Gruyter Ser. Nonlinear Anal. Appl., 27, De Gruyter, Berlin, 2018 | MR

[7] V. K. Kalantarov, O. A. Ladyzhenskaya, “O vozniknovenii kollapsov dlya kvazilineinykh uravnenii parabolicheskogo i giperbolicheskogo tipov”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 10, Zap. nauchn. sem. LOMI, 69, Izd-vo «Nauka», Leningrad. otd., L., 1977, 77–102 | MR | Zbl

[8] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, MAIK «Nauka/Interperiodika», M., 2001, 3–383 | MR | Zbl

[9] H. A. Levine, L. E. Payne, “Some nonexistence theorems for initial-boundary value problems with nonlinear boundary constraints”, Proc. Amer. Math. Soc., 46 (1974), 277–284 | MR

[10] B. Straughan, Explosive Instabilities in Mechanics, Springer-Verlag, Berlin, 1998 | MR

[11] L. A. Payne, D. H. Sattinger, “Saddle points and instability of nonlinear hyperbolic equations”, Israel J. Math., 22:3-4 (1975), 273–303 | DOI | MR

[12] M. O. Korpusov, “O razrushenii resheniya odnoi nelineinoi sistemy uravnenii s polozhitelnoi energiei”, TMF, 171:3 (2012), 355–369 | DOI | MR

[13] M. O. Korpusov, A. A. Panin, “O neprodolzhaemom reshenii i razrushenii resheniya odnomernogo uravneniya ionno-zvukovykh voln v plazme”, Matem. zametki, 102:3 (2017), 383–395 | DOI | MR

[14] N. Kutev, N. Kolkovska, M. Dimova, “Finite time blow up of the solutions to Boussinesq equation with linear restoring force and arbitrary positive energy”, Acta Math. Sci. Ser. B (Engl. Ed.), 36:3 (2016), 881–890 | DOI | MR

[15] Shun-Tang Wu, “Blow-up solutions for a nonlinear wave equation with porous acoustic boundary conditions”, Electron. J. Differential Equations, 2013, no. 20 | MR

[16] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR | Zbl

[17] R. T. Glassey, “Blow-up theorems for nonlinear wave equations”, Math. Z., 132 (1973), 183–203 | DOI | MR