On the Convergence of Franklin Series to~$+\infty$
Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 341-349.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the partial sums of a series in the Franklin system with numbers $2^{\mu}$, $\mu\in \mathbb{N}$, cannot approach $+\infty$ on a set of positive measure. In particular, a Franklin series cannot converge to $+\infty$ on a set of positive measure.
Keywords: Franklin system, Franklin series, convergence to $+\infty$.
@article{MZM_2019_106_3_a2,
     author = {G. G. Gevorkyan},
     title = {On the {Convergence} of {Franklin} {Series} to~$+\infty$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {341--349},
     publisher = {mathdoc},
     volume = {106},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a2/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
TI  - On the Convergence of Franklin Series to~$+\infty$
JO  - Matematičeskie zametki
PY  - 2019
SP  - 341
EP  - 349
VL  - 106
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a2/
LA  - ru
ID  - MZM_2019_106_3_a2
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%T On the Convergence of Franklin Series to~$+\infty$
%J Matematičeskie zametki
%D 2019
%P 341-349
%V 106
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a2/
%G ru
%F MZM_2019_106_3_a2
G. G. Gevorkyan. On the Convergence of Franklin Series to~$+\infty$. Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 341-349. http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a2/

[1] N. N. Luzin, Integral i trigonometricheskii ryad, GITTL, M.-L., 1951 | MR

[2] Yu. B. Germeier, Proizvodnye Rimana i Valle-Pussena i ikh primenenie k nekotorym voprosam iz teorii trigonometricheskikh ryadov, Dis. ... kand. fiz.-matem. nauk, M., 1946

[3] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950 | MR | Zbl

[4] D. E. Menshov, “O skhodimosti po mere trigonometricheskikh ryadov”, Tr. MIAN SSSR, 32, Izd-vo AN SSSR, M.–L., 1950, 3–98 | MR | Zbl

[5] A. A. Talalyan, “Trigonometricheskie ryady, universalnye otnositelno podryadov”, Izv. AN SSSR. Ser. matem., 27:3 (1963), 621–660 | MR | Zbl

[6] S. V. Konyagin, “O predelakh neopredelennosti trigonometricheskikh ryadov”, Matem. zametki, 44:6 (1988), 770–784 | MR | Zbl

[7] A. A. Talalyan, F. G. Arutyunyan, “O skhodimosti ryadov po sisteme Khaara k $+\infty$”, Matem. sb., 66(108):2 (1965), 240–247 | MR | Zbl

[8] R. F. Gundy, “Martingale theory and pointwise convergence of certain orthogonal series”, Trans. Amer. Math. Soc., 124:2 (1966), 228–248 | DOI | MR

[9] V. A. Skvortsov, “Differentsirovanie otnositelno setei i ryady Khaara”, Matem. zametki, 4:1 (1968), 33–40 | MR | Zbl

[10] R. I. Ovsepyan, A. A. Talalyan, “O skhodimosti ortogonalnykh ryadov k $+\infty$”, Matem. zametki, 8:2 (1970), 129–136 | MR | Zbl

[11] N. B. Pogosyan, “Predstavlenie izmerumykh funktsii bazisami $L_p[0, 1]$, $p\geqslant 2$”, Dokl. AN Arm. SSR, 63:4 (1976), 205–209 | MR

[12] P. Franklin, “A set of continuous orthogonal functions”, Math. Ann., 100 (1928), 522–529 | DOI | MR

[13] G. G. Gevorkyan, “O edinstvennosti ryadov po sisteme Franklina”, Matem. sb., 207:12 (2016), 30–53 | DOI | MR

[14] G. G. Gevorkyan, “Teoremy edinstvennosti ryadov Franklina, skhodyaschikhsya k integriruemym funktsiyam”, Matem. sb., 209:6 (2018), 25–46 | DOI

[15] G. G. Gevorkyan, “Teorema edinstvennosti dlya kratnykh ryadov Franklina”, Matem. zametki, 101:2 (2017), 199–210 | DOI | MR