The Sub-Riemannian Curvature of Curves in the Group of Semiaffine Transformations of the Euclidean Plane
Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 476-480.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Riemannian approximation, group of semiaffine transformations of the Euclidean plane, sub-Riemannian curvature.
@article{MZM_2019_106_3_a13,
     author = {M. V. Tryamkin},
     title = {The {Sub-Riemannian} {Curvature} of {Curves} in the {Group} of {Semiaffine} {Transformations} of the {Euclidean} {Plane}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {476--480},
     publisher = {mathdoc},
     volume = {106},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a13/}
}
TY  - JOUR
AU  - M. V. Tryamkin
TI  - The Sub-Riemannian Curvature of Curves in the Group of Semiaffine Transformations of the Euclidean Plane
JO  - Matematičeskie zametki
PY  - 2019
SP  - 476
EP  - 480
VL  - 106
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a13/
LA  - ru
ID  - MZM_2019_106_3_a13
ER  - 
%0 Journal Article
%A M. V. Tryamkin
%T The Sub-Riemannian Curvature of Curves in the Group of Semiaffine Transformations of the Euclidean Plane
%J Matematičeskie zametki
%D 2019
%P 476-480
%V 106
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a13/
%G ru
%F MZM_2019_106_3_a13
M. V. Tryamkin. The Sub-Riemannian Curvature of Curves in the Group of Semiaffine Transformations of the Euclidean Plane. Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 476-480. http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a13/

[1] M. Gromov, Sub-Riemannian Geometry, Progr. Math., 144, Birkhäuser Verlag, Basel, 1996, 79–323 | MR

[2] Z. M. Balogh, J. T. Tyson, E. Vecchi, Math. Z., 287:1-2 (2017), 1–38 | DOI | MR

[3] M. V. Tryamkin, Matem. zametki, 104:5 (2018), 796–800 | DOI

[4] A. Agrachev, D. Barilari, J. Dyn. Control Syst., 18:1 (2012), 21–44 | DOI | MR

[5] M. V. Tryamkin, Sib. matem. zhurn., 60:1 (2019), 214–228 | DOI

[6] M. V. Tryamkin, Izv. vuzov. Matem., 2018, no. 7, 86–90

[7] J. M. Lee, Riemannian Manifolds: An Introduction to Curvature, Grad. Texts in Math., 176, Springer, New York, 1997 | MR