The Sub-Riemannian Curvature of Curves in the Group of Semiaffine Transformations of the Euclidean Plane
Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 476-480
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
Riemannian approximation, group of semiaffine transformations of the Euclidean plane, sub-Riemannian curvature.
@article{MZM_2019_106_3_a13,
author = {M. V. Tryamkin},
title = {The {Sub-Riemannian} {Curvature} of {Curves} in the {Group} of {Semiaffine} {Transformations} of the {Euclidean} {Plane}},
journal = {Matemati\v{c}eskie zametki},
pages = {476--480},
year = {2019},
volume = {106},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a13/}
}
TY - JOUR AU - M. V. Tryamkin TI - The Sub-Riemannian Curvature of Curves in the Group of Semiaffine Transformations of the Euclidean Plane JO - Matematičeskie zametki PY - 2019 SP - 476 EP - 480 VL - 106 IS - 3 UR - http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a13/ LA - ru ID - MZM_2019_106_3_a13 ER -
M. V. Tryamkin. The Sub-Riemannian Curvature of Curves in the Group of Semiaffine Transformations of the Euclidean Plane. Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 476-480. http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a13/
[1] M. Gromov, Sub-Riemannian Geometry, Progr. Math., 144, Birkhäuser Verlag, Basel, 1996, 79–323 | MR
[2] Z. M. Balogh, J. T. Tyson, E. Vecchi, Math. Z., 287:1-2 (2017), 1–38 | DOI | MR
[3] M. V. Tryamkin, Matem. zametki, 104:5 (2018), 796–800 | DOI
[4] A. Agrachev, D. Barilari, J. Dyn. Control Syst., 18:1 (2012), 21–44 | DOI | MR
[5] M. V. Tryamkin, Sib. matem. zhurn., 60:1 (2019), 214–228 | DOI
[6] M. V. Tryamkin, Izv. vuzov. Matem., 2018, no. 7, 86–90
[7] J. M. Lee, Riemannian Manifolds: An Introduction to Curvature, Grad. Texts in Math., 176, Springer, New York, 1997 | MR