On Estimates in~$L_2(\mathbb{R})$ of Mean $\nu$-Widths of Classes of Functions Defined via the Generalized Modulus of Continuity of~$\omega_{\mathcal{M}}$
Matematičeskie zametki, Tome 106 (2019) no. 2, pp. 198-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the classes of functions $$ W^r(\omega_{\mathcal{M}},\Phi):=\{f \in L^r_2(\mathbb{R}): \omega_{\mathcal{M}}(f^{(r)},t) \le \Phi(t) \ \forall\,t \in (0,\infty)\}, $$ where $\Phi$ is a majorant and $r \in \mathbb{Z}_{+}$, lower and upper bounds for the Bernstein, Kolmogorov, and linear mean $\nu$-widths in the space $L_2(\mathbb{R})$ are obtained. A condition on the majorant $\Phi$ under which the exact values of these widths can be calculated is indicated. Several examples illustrating the results are given.
Keywords: mean dimension, mean $\nu$-width, entire function of exponential type, generalized modulus of continuity.
Mots-clés : majorant
@article{MZM_2019_106_2_a3,
     author = {S. B. Vakarchuk},
     title = {On {Estimates} in~$L_2(\mathbb{R})$ of {Mean} $\nu${-Widths} of {Classes} of {Functions} {Defined} via the {Generalized} {Modulus} of {Continuity} of~$\omega_{\mathcal{M}}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {198--211},
     publisher = {mathdoc},
     volume = {106},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a3/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
TI  - On Estimates in~$L_2(\mathbb{R})$ of Mean $\nu$-Widths of Classes of Functions Defined via the Generalized Modulus of Continuity of~$\omega_{\mathcal{M}}$
JO  - Matematičeskie zametki
PY  - 2019
SP  - 198
EP  - 211
VL  - 106
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a3/
LA  - ru
ID  - MZM_2019_106_2_a3
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%T On Estimates in~$L_2(\mathbb{R})$ of Mean $\nu$-Widths of Classes of Functions Defined via the Generalized Modulus of Continuity of~$\omega_{\mathcal{M}}$
%J Matematičeskie zametki
%D 2019
%P 198-211
%V 106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a3/
%G ru
%F MZM_2019_106_2_a3
S. B. Vakarchuk. On Estimates in~$L_2(\mathbb{R})$ of Mean $\nu$-Widths of Classes of Functions Defined via the Generalized Modulus of Continuity of~$\omega_{\mathcal{M}}$. Matematičeskie zametki, Tome 106 (2019) no. 2, pp. 198-211. http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a3/

[1] J. Boman, H. S. Shapiro, “Comparison theorems for a generalized modulus of continuity”, Ark. Mat., 9:1 (1971), 91–116 | DOI | MR | Zbl

[2] J. Boman, “Equivalence of generalized moduli of continuity”, Ark. Mat., 18:1 (1980), 73–100 | DOI | MR | Zbl

[3] S. N. Vasilev, “Tochnoe neravenstvo Dzheksona–Stechkina v $L_2$ s modulem nepreryvnosti, porodzhennym proizvolnym konechno-raznostnym operatorom s postoyannymi koeffitsientami”, Dokl. AN, 385:1 (2002), 11–14 | Zbl

[4] A. G. Babenko, “O neravenstve Dzheksona–Stechkina dlya nailuchshikh $L^2$-priblizhenii funktsii trigonometricheskimi polinomami”, Teoriya priblizhenii. Asimptoticheskie razlozheniya, Sbornik statei, Tr. IMM UrO RAN, 7, no. 1, 2001, 30–46 | MR | Zbl

[5] A. I. Kozko, A. V. Rozhdestvenskii, “O neravenstve Dzheksona s obobschennym modulem nepreryvnosti”, Matem. zametki, 73:5 (2003), 783–788 | DOI | MR | Zbl

[6] V. I. Ivanov, Kha Tkhi Min Khue, “Obobschennoe neravenstvo Dzheksona v prostranstve $L_2(\mathbb R^d)$ s vesom Danklya”, Tr. IMM UrO RAN, 20, no. 1, 2014, 109–118 | MR

[7] D. V. Gorbachev, “Otsenka optimalnogo argumenta v tochnom mnogomernom $L_2$-neravenstve Dzheksona–Stechkina”, Tr. IMM UrO RAN, 20, no. 1, 2014, 83–91 | MR

[8] K. Runovski, H-J. Schmeisser, On Modulus of Continuity Related to Riesz Derivative, Preprint, Friedrich-Schiller-Universität Jena, Jena, 2011

[9] S. Yu. Artamonov, “Kachestvo priblizheniya srednimi Fure v terminakh obschikh modulei gladkosti”, Matem. zametki, 98:1 (2015), 3–11 | DOI | MR | Zbl

[10] S. B. Vakarchuk, “Jackson-type inequalities with generalized modulus of continuity and exact values of the $n$-widths for the classes of $(\psi,\beta)$-differentiable functions in $L_2$. I”, Ukrainian Math. J., 68:6 (2016), 823–848 | DOI | MR | Zbl

[11] S. B. Vakarchuk, “Jackson-type inequalities with generalized modulus of continuity and exact values of the $n$-widths for the classes of $(\psi,\beta)$-differentiable functions in $L_2$. II”, Ukrainian Math. J., 68:8 (2017), 1165–1183 | DOI | MR | Zbl

[12] S. B. Vakarchuk, “Jackson-type inequalities with generalized modulus of continuity and exact values of the $n$-widths for the classes of $(\psi,\beta)$-differentiable functions in $L_2$. III”, Ukrainian Math. J., 68:10 (2017), 1495–1518 | DOI | MR | Zbl

[13] S. N. Vasilev, “Neravenstvo Dzheksona v $L_2(\mathbb R^N)$ s obobschennym modulem nepreryvnosti”, Tr. IMM UrO RAN, 16, no. 4, 2010, 93–99

[14] S. Yu. Artamonov, “Neperiodicheskii modul gladkosti, sootvetstvuyuschii proizvodnoi Rissa”, Matem. zametki, 99:6 (2016), 933–936 | DOI | MR | Zbl

[15] Yu. I. Grigoryan, “Poperechniki nekotorykh mnozhestv v funktsionalnykh prostranstvakh”, UMN, 30:3 (183) (1975), 161–162 | MR | Zbl

[16] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatlit, M., 1960 | MR

[17] G. G. Magaril-Ilyaev, “Srednyaya razmernost i poperechniki klassov funktsii na pryamoi”, Dokl. AN SSSR, 318:1 (1991), 35–38 | Zbl

[18] G. G. Magaril-Ilyaev, “Srednyaya razmernost, poperechniki i optimalnoe vosstanovlenie sobolevskikh klassov funktsii na pryamoi”, Matem. sb., 182:11 (1991), 1635–1656 | MR | Zbl

[19] S. B. Vakarchuk, “On some extremal problems of approximation theory of functions on the real axis. II”, J. Math. Sci. (N.Y.), 190:4 (2013), 613–630 | DOI | MR | Zbl

[20] S. B. Vakarchuk, “Nailuchshie srednekvadraticheskie priblizheniya tselymi funktsiyami eksponentsialnogo tipa i srednie $\nu$-poperechniki klassov funktsii na pryamoi”, Matem. zametki, 96:6 (2014), 827–848 | DOI | MR | Zbl

[21] S. B. Vakarchuk, M. Sh. Shabozov, M. R. Langarshoev, “O nailuchshikh srednekvadraticheskikh priblizheniyakh tselymi funktsiyami eksponentsialnogo tipa v $L_2(\mathbb R)$ i srednikh $\nu$-poperechnikakh nekotorykh funktsionalnykh klassov”, Izv. vuzov. Matem., 2014, no. 7, 30–48 | Zbl

[22] I. I. Ibragimov, F. G. Nasibov, “Ob otsenke nailuchshego priblizheniya summiruemoi funktsii na veschestvennoi osi posredstvom tselykh funktsii konechnoi stepeni”, Dokl. AN SSSR, 194:5 (1970), 1013–1016 | MR | Zbl

[23] A. P. Prudnikov, Yu. A. Brychkov, S. I. Marichev, Integraly i ryady, Nauka, M., 1981 | MR

[24] A. I. Kozko, A. V. Rozhdestvenskii, “O neravenstve Dzheksona v $L_2$ s obobschennym modulem nepreryvnosti”, Matem. sb., 195:8 (2004), 3–46 | DOI | MR | Zbl