The Steiner Subratio in Banach Spaces
Matematičeskie zametki, Tome 106 (2019) no. 2, pp. 188-197

Voir la notice de l'article provenant de la source Math-Net.Ru

For every $n=2,3,\dots$, the minimum of the Steiner subratio is found for $n$-point sets in Banach spaces, and an example of a Banach space is constructed for which this minimum is attained. An example of a Banach space for which the minimum possible Steiner subratio equals $1/2$ is also constructed.
Keywords: Banach space, shortest network, minimal filling, Steiner subratio.
@article{MZM_2019_106_2_a2,
     author = {L. Burusheva},
     title = {The {Steiner} {Subratio} in {Banach} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {188--197},
     publisher = {mathdoc},
     volume = {106},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a2/}
}
TY  - JOUR
AU  - L. Burusheva
TI  - The Steiner Subratio in Banach Spaces
JO  - Matematičeskie zametki
PY  - 2019
SP  - 188
EP  - 197
VL  - 106
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a2/
LA  - ru
ID  - MZM_2019_106_2_a2
ER  - 
%0 Journal Article
%A L. Burusheva
%T The Steiner Subratio in Banach Spaces
%J Matematičeskie zametki
%D 2019
%P 188-197
%V 106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a2/
%G ru
%F MZM_2019_106_2_a2
L. Burusheva. The Steiner Subratio in Banach Spaces. Matematičeskie zametki, Tome 106 (2019) no. 2, pp. 188-197. http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a2/