On the Run-Up for Two-Dimensional Shallow Water in the Linear Approximation
Matematičeskie zametki, Tome 106 (2019) no. 2, pp. 163-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear tsunami model is considered and the influence of the source parameters on the run-up is studied.
Keywords: linearized shallow water system, asymptotics, run-up.
@article{MZM_2019_106_2_a0,
     author = {A. Yu. Anikin and D. S. Minenkov},
     title = {On the {Run-Up} for {Two-Dimensional} {Shallow} {Water} in the {Linear} {Approximation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--173},
     publisher = {mathdoc},
     volume = {106},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a0/}
}
TY  - JOUR
AU  - A. Yu. Anikin
AU  - D. S. Minenkov
TI  - On the Run-Up for Two-Dimensional Shallow Water in the Linear Approximation
JO  - Matematičeskie zametki
PY  - 2019
SP  - 163
EP  - 173
VL  - 106
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a0/
LA  - ru
ID  - MZM_2019_106_2_a0
ER  - 
%0 Journal Article
%A A. Yu. Anikin
%A D. S. Minenkov
%T On the Run-Up for Two-Dimensional Shallow Water in the Linear Approximation
%J Matematičeskie zametki
%D 2019
%P 163-173
%V 106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a0/
%G ru
%F MZM_2019_106_2_a0
A. Yu. Anikin; D. S. Minenkov. On the Run-Up for Two-Dimensional Shallow Water in the Linear Approximation. Matematičeskie zametki, Tome 106 (2019) no. 2, pp. 163-173. http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a0/

[1] J. J. Stoker, Water Waves: The Mathematical Theory with Applications, John Wiley and Sons, New York, 1958 | MR

[2] E. N. Pelinovskii, Gidrodinamika voln tsunami, IPF RAN, Nizhnii Novgorod, 1996

[3] G. F. Carrier, H. P. Greenspan, “Water waves of finite amplitude on a sloping beach”, J. Fluid Mech., 4 (1958), 97–109 | DOI | MR | Zbl

[4] S. Yu. Dobrokhotov, B. Tirotstsi, “Lokalizovannye resheniya odnomernoi nelineinoi sistemy uravnenii melkoi vody so skorostyu $c=\sqrt x$”, UMN, 65:1 (391) (2010), 185–186 | DOI | MR | Zbl

[5] D. S. Minenkov, “Asymptotics near the shore for 2D shallow water over sloping planar bottom”, Proceedings of the International Conference “Days on Diffraction 2017”, St. Petersburg, 2017, 240–243

[6] V. E. Nazaikinskii, “Geometriya fazovogo prostranstva dlya volnovogo uravneniya, vyrozhdayuschegosya na granitse oblasti”, Matem. zametki, 92:1 (2012), 153–156 | DOI | MR | Zbl

[7] V. E. Nazaikinskii, “Kanonicheskii operator Maslova na lagranzhevykh mnogoobraziyakh v fazovom prostranstve, sootvetstvuyuschem vyrozhdayuschemusya na granitse volnovomu uravneniyu”, Matem. zametki, 96:2 (2014), 261–276 | DOI | MR | Zbl

[8] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Kharakteristiki s osobennostyami i granichnye znacheniya asimptoticheskogo resheniya zadachi Koshi dlya vyrozhdayuschegosya volnovogo uravneniya”, Matem. zametki, 100:5 (2016), 710–731 | DOI | MR | Zbl

[9] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Prostye asimptotiki obobschennogo volnovogo uravneniya s vyrozhdayuscheisya skorostyu i ikh prilozheniya v lineinoi zadache o nabege dlinnykh voln na bereg”, Matem. zametki, 104:4 (2018), 483–504 | DOI | Zbl

[10] S. Yu. Dobrokhotov, A. I. Shafarevich, B. Tirozzi, “Localized wave and vortical solutions to linear hyperbolic systems and their application to linear shallow water equations”, Russ. J. Math. Phys, 15:2 (2008), 192–221 | DOI | MR | Zbl

[11] S. Yu. Dobrokhotov, “Metody Maslova v linearizovannoi teorii gravitatsionnykh voln na poverkhnosti zhidkosti”, Dokl. AN SSSR, 269:1 (1983), 76–80 | MR | Zbl

[12] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskiy, “Operator separation of variables for adiabatic problems in quantum and wave mechanics”, J. Engrg. Math., 55 (2006), 183–237 | DOI | MR | Zbl

[13] T. Vukašinac, P. Zhevandrov, “Geometric asymptotics for a degenerate hyperbolic equation”, Russ. J. Math. Phys., 9:3 (2002), 371–381 | MR | Zbl

[14] V. E. Nazaikinskii, “O predstavleniyakh lokalizovannykh funktsii v $\mathbb R^2$ kanonicheskim operatorom Maslova”, Matem. zametki, 96:1 (2014), 88–100 | DOI | MR | Zbl

[15] S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii, T. Ya. Tudorovskii, “Novye formuly dlya kanonicheskogo operatora Maslova v okrestnosti fokalnykh tochek i kaustik v dvumernykh kvaziklassicheskikh asimptotikakh”, TMF, 177:3 (2013), 355–386 | DOI | MR | Zbl

[16] S. A. Sergeev, A. A. Tolchennikov, “Ob “operatorakh rozhdeniya” v zadache o lokalizovannykh resheniyakh linearizovannykh uravnenii melkoi vody s regulyarnymi i osobymi kharakteristikami”, Matem. zametki, 100:6 (2016), 911–922 | DOI | MR | Zbl

[17] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[18] S. F. Dotsenko, B. Yu. Sergievskii, L. V. Cherkasov, “Prostranstvennye volny tsunami, vyzvannye znakoperemennym smescheniem poverkhnosti okeana”, Issledovaniya tsunami, 1986, no. 1, 7–14

[19] S. Ya Sekerzh-Zen'kovich, “Simple asymptotic solution of the Cauchy–Poisson problem for head waves”, Russ. J. Math. Phys, 16:2 (2009), 315–322 | DOI | MR | Zbl

[20] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov summ ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR

[21] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Leningradskii un-t, L., 1980 | MR | Zbl

[22] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirozzi, “Asymptotic solution of the one-dimensional wave equation with localized initial data and with degenerating velocity. I”, Russ. J. Math. Phys, 17:4 (2010), 434–447 | DOI | MR | Zbl

[23] E. N. Pelinovsky, R. Kh. Mazova, “Exact analytical solutions of nonlinear problems of tsunami wave run-up on slopes with different profiles”, Natural Hazards, 6:3 (1992), 227–249 | DOI

[24] A. Yu. Anikin, S. Yu. Dobrokhotov, “Zavisimost struktury otrazhennykh ot berega dlinnykh voln ot formy nachalnogo dvumernogo vozmuscheniya”, Vychisl. tekhnol., 24:1 (2019), 42–54

[25] S. Yu. Dobrokhotov, D. S. Minenkov, V. E. Nazaikinskii, B. Tirozzi, “Functions of noncommuting operators in an asymptotic problem for a 2D wave equation with variable velocity and localized right-hand side”, Operator Theory, Pseudo-Differential Equations, and Mathematical Physics, Oper. Theory Adv. Appl., 228, Birkhäuser, Basel, 2013, 95–126 | MR

[26] S. Yu. Dobrokhotov, A. Yu. Anikin, “O priblizhenii reshenii dvumernogo volnovogo uravneniya c peremennoi skorostyu i lokalizovannoi pravoi chastyu s pomoschyu nekotorykh “prostykh” reshenii”, Matem. zametki, 100:6 (2016), 825–837 | DOI | MR | Zbl

[27] Kh. Kh. Ilyasov, V. E. Nazaikinskii, S. Ya. Sekerzh-Zenkovich, A. A. Tolchennikov, “Asimptoticheskaya otsenka koordinat epitsentra istochnika tsunami 2011 g. po mareogrammam, poluchennym na bue South Iwate GPS i na stantsii DART 21418”, Dokl. AN, 469:1 (2016), 46–50 | MR