Short Kloosterman Sums with Primes
Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 84-94

Voir la notice de l'article provenant de la source Math-Net.Ru

A new estimate of the Kloosterman sum with primes modulo a prime number $q$ is obtained, in which the number of summands can be of order $q^{0.5+\varepsilon}$. This estimate refines results obtained earlier by J. Bourgain (2005) and R. Baker (2012).
Keywords: Kloosterman sum
Mots-clés : primes, inverse residues.
@article{MZM_2019_106_1_a7,
     author = {M. A. Korolev},
     title = {Short {Kloosterman} {Sums} with {Primes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {84--94},
     publisher = {mathdoc},
     volume = {106},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a7/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - Short Kloosterman Sums with Primes
JO  - Matematičeskie zametki
PY  - 2019
SP  - 84
EP  - 94
VL  - 106
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a7/
LA  - ru
ID  - MZM_2019_106_1_a7
ER  - 
%0 Journal Article
%A M. A. Korolev
%T Short Kloosterman Sums with Primes
%J Matematičeskie zametki
%D 2019
%P 84-94
%V 106
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a7/
%G ru
%F MZM_2019_106_1_a7
M. A. Korolev. Short Kloosterman Sums with Primes. Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 84-94. http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a7/