Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_1_a5, author = {E. A. Kiselev and L. A. Minin and I. Ya. Novikov}, title = {Limit {Properties} of {Systems} of {Integer} {Translates} and {Functions} {Generating} {Tight} {Gabor} {Frames}}, journal = {Matemati\v{c}eskie zametki}, pages = {62--73}, publisher = {mathdoc}, volume = {106}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a5/} }
TY - JOUR AU - E. A. Kiselev AU - L. A. Minin AU - I. Ya. Novikov TI - Limit Properties of Systems of Integer Translates and Functions Generating Tight Gabor Frames JO - Matematičeskie zametki PY - 2019 SP - 62 EP - 73 VL - 106 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a5/ LA - ru ID - MZM_2019_106_1_a5 ER -
%0 Journal Article %A E. A. Kiselev %A L. A. Minin %A I. Ya. Novikov %T Limit Properties of Systems of Integer Translates and Functions Generating Tight Gabor Frames %J Matematičeskie zametki %D 2019 %P 62-73 %V 106 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a5/ %G ru %F MZM_2019_106_1_a5
E. A. Kiselev; L. A. Minin; I. Ya. Novikov. Limit Properties of Systems of Integer Translates and Functions Generating Tight Gabor Frames. Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 62-73. http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a5/
[1] Th. Schlumprecht, N. Sivakumar, “On the sampling and recovery of bandlimited functions via scattered translates of the Gaussian”, J. Approx. Theory, 151:1 (2009), 128–153 | DOI | MR
[2] E. A. Kiselev, L. A. Minin, I. Ya. Novikov, S. M. Sitnik, “O konstantakh Rissa dlya nekotorykh sistem tselochislennykh sdvigov”, Matem. zametki, 96:2 (2014), 239–250 | DOI | MR | Zbl
[3] E. A. Kiselev, “Sistemy tselochislennykh sdvigov, porozhdennye svertkoi funktsii Gaussa i Lorentsa”, Vestnik Voronezhskogo gos. un-ta. Ser. Fiz. Matem., 2016, no. 4, 43–50 | Zbl
[4] B. C. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl
[5] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005 | MR | Zbl
[6] I. Dobeshi, Desyat lektsii po veivletam, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001 | MR | Zbl
[7] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser Verlag, Cham, 2016 | MR | Zbl
[8] A. J. E. M. Janssen, “Some Weyl-Heisenberg frame bound calculations”, Indag. Math. (N.S.), 7:2 (1996), 165–183 | DOI | MR | Zbl
[9] A. J. E. M. Janssen, T. Strohmer, “Characterization and computation of canonical tight windows for Gabor frames”, J. Fourier Anal. Appl., 8:1 (2002), 1–28 | DOI | MR | Zbl
[10] A. J. E. M. Janssen, “On generating tight Gabor frames at critical density”, J. Fourier Anal. Appl., 9:2 (2003), 175–214 | DOI | MR | Zbl
[11] Ch. K. Chui, Vvedenie v veivlety, Mir, M., 2001 | MR | Zbl
[12] V. Maz'ya, G. Schmidt, Approximate Approximations, Amer. Math. Soc., Providence, RI, 2007 | MR | Zbl
[13] E. A. Kiselev, L. A. Minin, I. Ya. Novikov, “Vychislenie konstant Rissa i ortogonalizatsiya dlya nepolnykh sistem kogerentnykh sostoyanii s pomoschyu teta-funktsii”, Matem. sb., 207:8 (2016), 101–116 | DOI | MR | Zbl
[14] L. A. Minin, I. Ya. Novikov, S. N. Ushakov, “O razlozhenii po freimam Gabora, porozhdennym funktsiei Gaussa”, Matem. zametki, 100:6 (2016), 951–953 | DOI | MR | Zbl