Measuring the Rate of Convergence in the Birkhoff Ergodic Theorem
Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 40-52

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimates of the rate of convergence in the Birkhoff ergodic theorem which hold almost everywhere are considered. For the action of an ergodic automorphism, the existence of such estimates is proved, their structure is studied, and unimprovability questions are considered.
Keywords: individual ergodic theorem, rate of convergence in ergodic theorems, unimprovability of estimates, return time, lattice.
@article{MZM_2019_106_1_a3,
     author = {A. G. Kachurovskii and I. V. Podvigin},
     title = {Measuring the {Rate} of {Convergence} in the {Birkhoff} {Ergodic} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {40--52},
     publisher = {mathdoc},
     volume = {106},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a3/}
}
TY  - JOUR
AU  - A. G. Kachurovskii
AU  - I. V. Podvigin
TI  - Measuring the Rate of Convergence in the Birkhoff Ergodic Theorem
JO  - Matematičeskie zametki
PY  - 2019
SP  - 40
EP  - 52
VL  - 106
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a3/
LA  - ru
ID  - MZM_2019_106_1_a3
ER  - 
%0 Journal Article
%A A. G. Kachurovskii
%A I. V. Podvigin
%T Measuring the Rate of Convergence in the Birkhoff Ergodic Theorem
%J Matematičeskie zametki
%D 2019
%P 40-52
%V 106
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a3/
%G ru
%F MZM_2019_106_1_a3
A. G. Kachurovskii; I. V. Podvigin. Measuring the Rate of Convergence in the Birkhoff Ergodic Theorem. Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 40-52. http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a3/