On Formal Buchstaber Groups of Special Form
Matematičeskie zametki, Tome 105 (2019) no. 6, pp. 899-910.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete description of Buchstaber formal groups $$ F(u,v)=\frac{u^2 A(v)-v^2 A(u)}{uB(v)-vB(u)}\mspace{2mu}, $$ in which the series $A(x)$ and $B(x)$ satisfy the relation $A(x)^\ell=B(x)^m$, is given. A new family of Buchstaber formal groups depending on two algebraically independent parameters is obtained.
Keywords: formal groups, addition theorems, elliptic functions.
@article{MZM_2019_105_6_a7,
     author = {A. V. Ustinov},
     title = {On {Formal} {Buchstaber} {Groups} of {Special} {Form}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {899--910},
     publisher = {mathdoc},
     volume = {105},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_6_a7/}
}
TY  - JOUR
AU  - A. V. Ustinov
TI  - On Formal Buchstaber Groups of Special Form
JO  - Matematičeskie zametki
PY  - 2019
SP  - 899
EP  - 910
VL  - 105
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_6_a7/
LA  - ru
ID  - MZM_2019_105_6_a7
ER  - 
%0 Journal Article
%A A. V. Ustinov
%T On Formal Buchstaber Groups of Special Form
%J Matematičeskie zametki
%D 2019
%P 899-910
%V 105
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_6_a7/
%G ru
%F MZM_2019_105_6_a7
A. V. Ustinov. On Formal Buchstaber Groups of Special Form. Matematičeskie zametki, Tome 105 (2019) no. 6, pp. 899-910. http://geodesic.mathdoc.fr/item/MZM_2019_105_6_a7/

[1] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl

[2] I. M. Krichever, “Ellipticheskie resheniya uravneniya Kadomtseva–Petviashvili i integriruemye sistemy chastits”, Funkts. analiz i ego pril., 14:4 (1980), 45–54 | MR | Zbl

[3] V. M. Bukhshtaber, “Funktsionalnye uravneniya, assotsiirovannye s teoremami slozheniya dlya ellipticheskikh funktsii, i dvuznachnye algebraicheskie gruppy”, UMN, 45:3 (273) (1990), 185–186 | MR | Zbl

[4] V. M. Buchstaber, T. E. Panov, Toric Topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl

[5] A. V. Ustinov, “Formalnaya gruppa Bukhshtabera i ellipticheskie funktsii malykh urovnei”, Matem. zametki, 102:1 (2017), 96–108 | DOI | MR | Zbl

[6] R. Grekhem, D. Knut, O. Patashnik, Konkretnaya matematika. Osnovanie informatiki, Mir, M., 1998 | MR | Zbl

[7] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, “On the Lambert $w$ function”, Adv. Comput. Math., 5:4 (1996), 329–359 | MR | Zbl

[8] V. M. Bukhshtaber, A. N. Kholodov, “Formalnye gruppy, funktsionalnye uravneniya i obobschennye teorii kogomologii”, Matem. sb., 181:1 (1990), 75–94 | MR | Zbl

[9] V. M. Bukhshtaber, A. V. Ustinov, “Koltsa koeffitsientov formalnykh grupp”, Matem. sb., 206:11 (2015), 19–60 | DOI | MR

[10] F. Hirzebruch, T. Berger, R. Jung, Manifolds and Modular Forms, Friedr. Vieweg Sohn, Braunschweig, 1992 | MR | Zbl

[11] V. M. Bukhshtaber, E. Yu. Bunkova, “Universalnaya formalnaya gruppa, opredelyayuschaya ellipticheskuyu funktsiyu urovnya 3”, Chebyshevskii sb., 16:2 (2015), 66–78

[12] E. Yu. Bunkova, V. M. Bukhshtaber, A. V. Ustinov, “Koltsa koeffitsientov formalnykh grupp Teita, zadayuschikh rody Krichevera”, Algebra, geometriya i teoriya chisel, Tr. MIAN, 292, MAIK «Nauka/Interperiodika», M., 2016, 43–68 | DOI | MR | Zbl