Orthogonal Bases of Involution in Hadamard Algebras
Matematičeskie zametki, Tome 105 (2019) no. 6, pp. 879-889.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of a Hadamard decomposition of a semisimple associative finite-dimensional complex algebra generalizes the notion of classical Hadamard matrices, which correspond to the case of commutative algebras. Algebras admitting a Hadamard decomposition are said to be Hadamard. Images of orthogonal bases of involution in Hadamard algebras under the canonical projections of these algebras onto their simple components are studied. Using a technique related to the study of central primitive idempotents of Hadamard algebras, we obtain a necessary condition for a family of involutory matrices of fixed order to be such an image. It is also shown that this necessary condition is not sufficient. We also present new proofs of results proved earlier.
Mots-clés : orthogonal decomposition, Hadamard algebra, Hadamard matrix.
@article{MZM_2019_105_6_a5,
     author = {D. N. Ivanov},
     title = {Orthogonal {Bases} of {Involution} in {Hadamard} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {879--889},
     publisher = {mathdoc},
     volume = {105},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_6_a5/}
}
TY  - JOUR
AU  - D. N. Ivanov
TI  - Orthogonal Bases of Involution in Hadamard Algebras
JO  - Matematičeskie zametki
PY  - 2019
SP  - 879
EP  - 889
VL  - 105
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_6_a5/
LA  - ru
ID  - MZM_2019_105_6_a5
ER  - 
%0 Journal Article
%A D. N. Ivanov
%T Orthogonal Bases of Involution in Hadamard Algebras
%J Matematičeskie zametki
%D 2019
%P 879-889
%V 105
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_6_a5/
%G ru
%F MZM_2019_105_6_a5
D. N. Ivanov. Orthogonal Bases of Involution in Hadamard Algebras. Matematičeskie zametki, Tome 105 (2019) no. 6, pp. 879-889. http://geodesic.mathdoc.fr/item/MZM_2019_105_6_a5/

[1] M. Kholl, Kombinatorika, Mir, M., 1970 | MR | Zbl

[2] K. J. Horada, Hadamard Matrices and Their Applications, Princeton Univ. Press, Princeton, NJ, 2007 | MR | Zbl

[3] D. N. Ivanov, “Ortogonalnye razlozheniya assotsiativnykh algebr i sbalansirovannye sistemy idempotentov”, Matem. sb., 189:12 (1998), 83–102 | DOI | MR | Zbl

[4] D. N. Ivanov, “Stepeni neprivodimykh kharakterov i razmernosti adamarovykh algebr”, Matem. zametki, 98:2 (2015), 230–236 | DOI | MR | Zbl

[5] A. I. Kostrikin, I. A. Kostrikin, V. A. Ufnarovskii, “Ortogonalnye razlozheniya prostykh algebr Li (tip $A_n$)”, Analiticheskaya teoriya chisel, matematicheskii analiz i ikh prilozheniya, Tr. MIAN SSSR, 158, 1981, 105–120 | MR | Zbl

[6] C. Godsil, G. Royle, Algebraic Graph Theory, Springer, New York, 2001 | MR | Zbl