Kostant Prequantization of Symplectic Manifolds with Contact Singularities
Matematičeskie zametki, Tome 105 (2019) no. 6, pp. 857-878
Voir la notice de l'article provenant de la source Math-Net.Ru
The relationship between the Bohr–Sommerfeld quantization condition and the integrality of the symplectic structure in Planck constant units is considered. Constructions of spherical and toric $\Theta$-handles are proposed which allow one to obtain symplectic manifolds with contact singularities, preserve Kostant–Souriau prequantization, and expect interesting topological applications. In particular, the toric $\Theta$-handle glues Liouville foliations, while the spherical handle generates (pre)quantized connected sums of symplectic manifolds. In this way, nonorientable manifolds may arise.
Mots-clés :
quantization, Kostant–Souriau quantization
Keywords: Bohr–Sommerfeld conditions, contact singularity, $\Theta$-handle.
Keywords: Bohr–Sommerfeld conditions, contact singularity, $\Theta$-handle.
@article{MZM_2019_105_6_a4,
author = {D. B. Zot'ev},
title = {Kostant {Prequantization} of {Symplectic} {Manifolds} with {Contact} {Singularities}},
journal = {Matemati\v{c}eskie zametki},
pages = {857--878},
publisher = {mathdoc},
volume = {105},
number = {6},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_6_a4/}
}
D. B. Zot'ev. Kostant Prequantization of Symplectic Manifolds with Contact Singularities. Matematičeskie zametki, Tome 105 (2019) no. 6, pp. 857-878. http://geodesic.mathdoc.fr/item/MZM_2019_105_6_a4/