Kostant Prequantization of Symplectic Manifolds with Contact Singularities
Matematičeskie zametki, Tome 105 (2019) no. 6, pp. 857-878

Voir la notice de l'article provenant de la source Math-Net.Ru

The relationship between the Bohr–Sommerfeld quantization condition and the integrality of the symplectic structure in Planck constant units is considered. Constructions of spherical and toric $\Theta$-handles are proposed which allow one to obtain symplectic manifolds with contact singularities, preserve Kostant–Souriau prequantization, and expect interesting topological applications. In particular, the toric $\Theta$-handle glues Liouville foliations, while the spherical handle generates (pre)quantized connected sums of symplectic manifolds. In this way, nonorientable manifolds may arise.
Mots-clés : quantization, Kostant–Souriau quantization
Keywords: Bohr–Sommerfeld conditions, contact singularity, $\Theta$-handle.
@article{MZM_2019_105_6_a4,
     author = {D. B. Zot'ev},
     title = {Kostant {Prequantization} of {Symplectic} {Manifolds} with {Contact} {Singularities}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {857--878},
     publisher = {mathdoc},
     volume = {105},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_6_a4/}
}
TY  - JOUR
AU  - D. B. Zot'ev
TI  - Kostant Prequantization of Symplectic Manifolds with Contact Singularities
JO  - Matematičeskie zametki
PY  - 2019
SP  - 857
EP  - 878
VL  - 105
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_6_a4/
LA  - ru
ID  - MZM_2019_105_6_a4
ER  - 
%0 Journal Article
%A D. B. Zot'ev
%T Kostant Prequantization of Symplectic Manifolds with Contact Singularities
%J Matematičeskie zametki
%D 2019
%P 857-878
%V 105
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_6_a4/
%G ru
%F MZM_2019_105_6_a4
D. B. Zot'ev. Kostant Prequantization of Symplectic Manifolds with Contact Singularities. Matematičeskie zametki, Tome 105 (2019) no. 6, pp. 857-878. http://geodesic.mathdoc.fr/item/MZM_2019_105_6_a4/