Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_105_5_a8, author = {A. B. Muravnik}, title = {Elliptic {Problems} with {Nonlocal} {Potential} {Arising} in {Models} of {Nonlinear} {Optics}}, journal = {Matemati\v{c}eskie zametki}, pages = {747--762}, publisher = {mathdoc}, volume = {105}, number = {5}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a8/} }
A. B. Muravnik. Elliptic Problems with Nonlocal Potential Arising in Models of Nonlinear Optics. Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 747-762. http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a8/
[1] M. A. Vorontsov, N. G. Iroshnikov, R. L. Abernathy, “Diffractive patterns in a nonlinear optical two-dimensional feedback system with field rotation”, Chaos, Solitons, and Fractals, 4:8-9 (1994), 1701–1716 | DOI | Zbl
[2] A. L. Skubachevskii, “O bifurkatsii Khopfa dlya kvazilineinogo parabolicheskogo funktsionalno-differentsialnogo uravneniya”, Differents. uravneniya, 34:10 (1998), 1394–1401 | MR | Zbl
[3] A. L. Skubachevskii, “Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics”, Nonlinear Anal., 32:2 (1998), 261–278 | DOI | MR | Zbl
[4] A. L. Skubachevskii, Elliptic Functional Differential Equations and Applications, Birkhäuser Verlag, Basel, 1997 | MR | Zbl
[5] A. L. Skubachevskii, “Neklassicheskie kraevye zadachi. I”, SMFN, 26, RUDN, M., 2007, 3–132 | MR | Zbl
[6] A. L. Skubachevskii, “Neklassicheskie kraevye zadachi. II”, Uravneniya v chastnykh proizvodnykh, SMFN, 33, RUDN, M., 2009, 3–179 | MR
[7] P. L. Gurevich, “Ellipticheskie zadachi s nelokalnymi kraevymi usloviyami i polugruppy Fellera”, Uravneniya v chastnykh proizvodnykh, SMFN, 38, RUDN, M., 2010, 3–173 | MR | Zbl
[8] A. B. Muravnik, “O zadache Dirikhle v poluploskosti dlya differentsialno-raznostnykh ellipticheskikh uravnenii”, SMFN, 60, RUDN, M., 2016, 102–113
[9] A. B. Muravnik, “Asimptoticheskie svoistva reshenii zadachi Dirikhle v poluploskosti dlya nekotorykh differentsialno-raznostnykh ellipticheskikh uravnenii”, Matem. zametki, 100:4 (2016), 566–576 | DOI | MR | Zbl
[10] A. B. Muravnik, “On the half-plane Dirichlet problem for differential-difference elliptic equations with several nonlocal terms”, Math. Model. Nat. Phenom., 12:6 (2017), 130–143 | DOI | MR | Zbl
[11] A. B. Muravnik, “Asimptoticheskie svoistva reshenii dvumernykh differentsialno-raznostnykh ellipticheskikh zadach”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 63, no. 4, Rossiiskii universitet druzhby narodov, M., 2017, 678–688 | DOI
[12] V. A. Kondratev, E. M. Landis, “Kachestvennaya teoriya lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka”, Differentsialnye uravneniya s chastnymi proizvodnymi – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 32, VINITI, M., 1988, 99–215 | MR | Zbl
[13] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl
[14] V. N. Denisov, A. B. Muravnik, “Ob asimptotike resheniya zadachi Dirikhle dlya ellipticheskogo uravneniya v poluprostranstve”, Nelineinyi analiz i nelineinye differentsialnye uravneniya, Fizmatlit, M., 2003, 397–417 | MR | Zbl
[15] V. Denisov, A. Muravnik, “On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations”, Electron. Res. Announc. Amer. Math. Soc., 9 (2003), 88–93 | DOI | MR | Zbl
[16] I. M. Gelfand, G. E. Shilov, “Preobrazovaniya Fure bystro rastuschikh funktsii i voprosy edinstvennosti resheniya zadachi Koshi”, UMN, 8:6 (58) (1953), 3–54 | MR | Zbl
[17] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii. Vyp. 3. Nekotorye voprosy teorii differentsialnykh uravnenii, Fizmatgiz, M., 1958 | MR | Zbl
[18] N. Danford, Dzh. Shvarts, Lineinye operatory. T. 2. Spektralnaya teoriya. Samosopryazhennye operatory v gilbertovom prostranstve, IL, M., 1966 | MR | Zbl