Elliptic Problems with Nonlocal Potential Arising in Models of Nonlinear Optics
Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 747-762.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet problem in the half-plane for strong elliptic differential-difference equations with nonlocal potentials is considered. The classical solvability of this problem is proved, and the integral representation of this classical solution by a Poisson-type relation is constructed.
Keywords: differential-difference equations, elliptic problems, nonlocal potential.
@article{MZM_2019_105_5_a8,
     author = {A. B. Muravnik},
     title = {Elliptic {Problems} with {Nonlocal} {Potential} {Arising} in {Models} of {Nonlinear} {Optics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {747--762},
     publisher = {mathdoc},
     volume = {105},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a8/}
}
TY  - JOUR
AU  - A. B. Muravnik
TI  - Elliptic Problems with Nonlocal Potential Arising in Models of Nonlinear Optics
JO  - Matematičeskie zametki
PY  - 2019
SP  - 747
EP  - 762
VL  - 105
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a8/
LA  - ru
ID  - MZM_2019_105_5_a8
ER  - 
%0 Journal Article
%A A. B. Muravnik
%T Elliptic Problems with Nonlocal Potential Arising in Models of Nonlinear Optics
%J Matematičeskie zametki
%D 2019
%P 747-762
%V 105
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a8/
%G ru
%F MZM_2019_105_5_a8
A. B. Muravnik. Elliptic Problems with Nonlocal Potential Arising in Models of Nonlinear Optics. Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 747-762. http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a8/

[1] M. A. Vorontsov, N. G. Iroshnikov, R. L. Abernathy, “Diffractive patterns in a nonlinear optical two-dimensional feedback system with field rotation”, Chaos, Solitons, and Fractals, 4:8-9 (1994), 1701–1716 | DOI | Zbl

[2] A. L. Skubachevskii, “O bifurkatsii Khopfa dlya kvazilineinogo parabolicheskogo funktsionalno-differentsialnogo uravneniya”, Differents. uravneniya, 34:10 (1998), 1394–1401 | MR | Zbl

[3] A. L. Skubachevskii, “Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics”, Nonlinear Anal., 32:2 (1998), 261–278 | DOI | MR | Zbl

[4] A. L. Skubachevskii, Elliptic Functional Differential Equations and Applications, Birkhäuser Verlag, Basel, 1997 | MR | Zbl

[5] A. L. Skubachevskii, “Neklassicheskie kraevye zadachi. I”, SMFN, 26, RUDN, M., 2007, 3–132 | MR | Zbl

[6] A. L. Skubachevskii, “Neklassicheskie kraevye zadachi. II”, Uravneniya v chastnykh proizvodnykh, SMFN, 33, RUDN, M., 2009, 3–179 | MR

[7] P. L. Gurevich, “Ellipticheskie zadachi s nelokalnymi kraevymi usloviyami i polugruppy Fellera”, Uravneniya v chastnykh proizvodnykh, SMFN, 38, RUDN, M., 2010, 3–173 | MR | Zbl

[8] A. B. Muravnik, “O zadache Dirikhle v poluploskosti dlya differentsialno-raznostnykh ellipticheskikh uravnenii”, SMFN, 60, RUDN, M., 2016, 102–113

[9] A. B. Muravnik, “Asimptoticheskie svoistva reshenii zadachi Dirikhle v poluploskosti dlya nekotorykh differentsialno-raznostnykh ellipticheskikh uravnenii”, Matem. zametki, 100:4 (2016), 566–576 | DOI | MR | Zbl

[10] A. B. Muravnik, “On the half-plane Dirichlet problem for differential-difference elliptic equations with several nonlocal terms”, Math. Model. Nat. Phenom., 12:6 (2017), 130–143 | DOI | MR | Zbl

[11] A. B. Muravnik, “Asimptoticheskie svoistva reshenii dvumernykh differentsialno-raznostnykh ellipticheskikh zadach”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 63, no. 4, Rossiiskii universitet druzhby narodov, M., 2017, 678–688 | DOI

[12] V. A. Kondratev, E. M. Landis, “Kachestvennaya teoriya lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka”, Differentsialnye uravneniya s chastnymi proizvodnymi – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 32, VINITI, M., 1988, 99–215 | MR | Zbl

[13] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[14] V. N. Denisov, A. B. Muravnik, “Ob asimptotike resheniya zadachi Dirikhle dlya ellipticheskogo uravneniya v poluprostranstve”, Nelineinyi analiz i nelineinye differentsialnye uravneniya, Fizmatlit, M., 2003, 397–417 | MR | Zbl

[15] V. Denisov, A. Muravnik, “On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations”, Electron. Res. Announc. Amer. Math. Soc., 9 (2003), 88–93 | DOI | MR | Zbl

[16] I. M. Gelfand, G. E. Shilov, “Preobrazovaniya Fure bystro rastuschikh funktsii i voprosy edinstvennosti resheniya zadachi Koshi”, UMN, 8:6 (58) (1953), 3–54 | MR | Zbl

[17] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii. Vyp. 3. Nekotorye voprosy teorii differentsialnykh uravnenii, Fizmatgiz, M., 1958 | MR | Zbl

[18] N. Danford, Dzh. Shvarts, Lineinye operatory. T. 2. Spektralnaya teoriya. Samosopryazhennye operatory v gilbertovom prostranstve, IL, M., 1966 | MR | Zbl