Jackson-Type Inequalities in the Spaces~$S^{(p,q)}(\sigma^{m-1})$
Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 724-739
Voir la notice de l'article provenant de la source Math-Net.Ru
In the case of approximation of functions by using linear methods of summation of their Fourier–Laplace series in the spaces $S^{(p,q)}(\sigma^{m-1})$, $m\ge 3$, for classes of functions defined by transformations of their Fourier–Laplace series using multipliers, Jackson-type inequalities are established in terms of operators which are also defined by the corresponding transformations of the Fourier–Laplace series.
Keywords:
Fourier–Laplace series, linear summation methods, best approximations
Mots-clés : convolution.
Mots-clés : convolution.
@article{MZM_2019_105_5_a6,
author = {R. A. Lasuriya},
title = {Jackson-Type {Inequalities} in the {Spaces~}$S^{(p,q)}(\sigma^{m-1})$},
journal = {Matemati\v{c}eskie zametki},
pages = {724--739},
publisher = {mathdoc},
volume = {105},
number = {5},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a6/}
}
R. A. Lasuriya. Jackson-Type Inequalities in the Spaces~$S^{(p,q)}(\sigma^{m-1})$. Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 724-739. http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a6/