On Nonextendable Solutions and Blow-Ups of Solutions of Pseudoparabolic Equations with Coercive and Constant-Sign Nonlinearities: Analytical and Numerical Study
Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 708-723.

Voir la notice de l'article provenant de la source Math-Net.Ru

The blow-up of solutions of two initial boundary-value problems different in the form of the equation's nonlinearity is investigated. This leads to different approaches to the analytical proof of the blow-up of solutions, but a result about the blow-up of solutions is obtained in both cases. The analytical study is supplemented by numerical investigations, which make it possible to determine the time of the blow-up and its character in each particular case.
Keywords: blow-up, nonextendable solution, Richardson extrapolation.
Mots-clés : pseudoparabolic equation
@article{MZM_2019_105_5_a5,
     author = {I. I. Kolotov and A. A. Panin},
     title = {On {Nonextendable} {Solutions} and {Blow-Ups} of {Solutions} of {Pseudoparabolic} {Equations} with {Coercive} and {Constant-Sign} {Nonlinearities:} {Analytical} and {Numerical} {Study}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {708--723},
     publisher = {mathdoc},
     volume = {105},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a5/}
}
TY  - JOUR
AU  - I. I. Kolotov
AU  - A. A. Panin
TI  - On Nonextendable Solutions and Blow-Ups of Solutions of Pseudoparabolic Equations with Coercive and Constant-Sign Nonlinearities: Analytical and Numerical Study
JO  - Matematičeskie zametki
PY  - 2019
SP  - 708
EP  - 723
VL  - 105
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a5/
LA  - ru
ID  - MZM_2019_105_5_a5
ER  - 
%0 Journal Article
%A I. I. Kolotov
%A A. A. Panin
%T On Nonextendable Solutions and Blow-Ups of Solutions of Pseudoparabolic Equations with Coercive and Constant-Sign Nonlinearities: Analytical and Numerical Study
%J Matematičeskie zametki
%D 2019
%P 708-723
%V 105
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a5/
%G ru
%F MZM_2019_105_5_a5
I. I. Kolotov; A. A. Panin. On Nonextendable Solutions and Blow-Ups of Solutions of Pseudoparabolic Equations with Coercive and Constant-Sign Nonlinearities: Analytical and Numerical Study. Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 708-723. http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a5/

[1] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl

[2] M. O. Korpusov, “O razrushenii reshenii nelineinykh uravnenii tipa uravneniya Khokhlova–Zabolotskoi”, TMF, 194:3 (2018), 403–417 | DOI | Zbl

[3] E. V. Yushkov, M. O. Korpusov, “Gradientnaya katastrofa v obobschennykh uravneniyakh Byurgersa i Bussineska”, Izv. RAN. Ser. matem., 81:6 (2017), 232–242 | DOI | Zbl

[4] M. O. Korpusov, A. A. Panin, “O neprodolzhaemom reshenii i razrushenii resheniya odnomernogo uravneniya ionno-zvukovykh voln v plazme”, Matem. zametki, 102:3 (2017), 383–395 | DOI | MR | Zbl

[5] M. O. Korpusov, “O razrushenii za konechnoe vremya resheniya nachalno-kraevoi zadachi dlya nelineinogo uravneniya ionno-zvukovykh voln”, TMF, 187:3 (2016), 447–454 | DOI | MR | Zbl

[6] M. O. Korpusov, “Kriticheskie pokazateli mgnovennogo razrusheniya ili lokalnoi razreshimosti nelineinykh uravnenii sobolevskogo tipa”, Izv. RAN. Ser. matem., 79:5 (2015), 103–162 | DOI | MR | Zbl

[7] A. A. Panin, “Lokalnaya razreshimost i razrushenie resheniya dlya uravneniya Rozenau–Byurgersa s razlichnymi granichnymi usloviyami”, TMF, 177:1 (2013), 93–110 | DOI | MR | Zbl

[8] M. O. Korpusov, A. A. Panin, “Lokalnaya razreshimost i razrushenie resheniya dlya uravneniya Bendzhamena–Bona–Makhoni–Byurgersa s nelokalnym granichnym usloviem”, TMF, 175:2 (2013), 159–172 | DOI | MR | Zbl

[9] A. A. Panin, G. I. Shlyapugin, “O lokalnoi razreshimosti i razrushenii reshenii odnomernykh uravnenii tipa Yadzimy–Oikavy–Satsumy”, TMF, 193:2 (2017), 179–192 | DOI | Zbl

[10] G. A. Sviridyuk, V. O. Kozak, “Fazovoe prostranstvo nachalno-kraevoi zadachi dlya uravneniya Khoffa”, Matem. zametki, 71:2 (2002), 292–297 | DOI | MR | Zbl

[11] M. O. Korpusov, A. G. Sveshnikov, E. V. Yushkov, Metody teorii razrusheniya reshenii nelineinykh uravnenii matematicheskoi fiziki, Fizicheskii fakultet MGU, M., 2014

[12] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, MAIK «Nauka/Interperiodika», M., 2001, 3–383 | MR | Zbl

[13] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[14] V. A. Galaktionov, S. I. Pokhozhaev, “Uravneniya nelineinoi dispersii tretego poryadka: udarnye volny, volny razrezheniya i razrusheniya”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1819–1846 | MR | Zbl

[15] M. O. Korpusov, A. G. Sveshnikov, Nelineinyi funktsionalnyi analiz i matematicheskoe modelirovanie v fizike. Geometricheskie i topologicheskie svoistva lineinykh prostranstv, Krasand, M., 2011

[16] Kh. Gaevskii, K. Greger, K. Zakharias, Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR | Zbl

[17] A. A. Panin, “O lokalnoi razreshimosti i razrushenii resheniya abstraktnogo nelineinogo integralnogo uravneniya Volterra”, Matem. zametki, 97:6 (2015), 884–903 | DOI | MR | Zbl

[18] M. O. Korpusov, A. A. Panin, “O razrushenii resheniya abstraktnoi zadachi Koshi dlya formalno giperbolicheskogo uravneniya s dvoinoi nelineinostyu”, Izv. RAN. Ser. matem., 78:5 (2014), 91–142 | DOI | MR | Zbl

[19] R. Kurant, D. Gilbert, Metody sovremennoi matematicheskoi fiziki, T. 1, GITTL, M.–L., 1951 | MR

[20] E. A. Alshina, N. N. Kalitkin, P. V. Koryakin, “Diagnostika osobennostei tochnogo resheniya pri raschetakh s kontrolem tochnosti”, Zh. vychisl. matem. i matem. fiz., 45:10 (2005), 1837–1847 | MR | Zbl

[21] A. B. Al'shin, E. A. Al'shina, “Numerical diagnosis of blow-up of solutions of pseudoparabolic equations”, J. Math. Sci. (N.Y.), 148:1 (2008), 143–162 | DOI | MR | Zbl

[22] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, E. V. Yushkov, “Blow-up for one Sobolev problem: theoretical approach and numerical analysis”, J. Math. Anal. Appl., 442:2 (2016), 451–468 | DOI | MR | Zbl

[23] D. V. Lukyanenko, A. A. Panin, “Razrushenie resheniya uravneniya stratifikatsii ob'emnogo zaryada v poluprovodnikakh: chislennyi analiz pri svedenii iskhodnogo uravneniya k differentsialno-algebraicheskoi sisteme”, Vych. met. programmirovanie, 17:4 (2016), 437–446

[24] M. O. Korpusov, D. V. Lukyanenko, E. A. Ovsyannikov, A. A. Panin, “Lokalnaya razreshimost i razrushenie resheniya odnogo uravneniya s kvadratichnoi nekoertsitivnoi nelineinostyu”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 10:2 (2017), 107–123 | DOI | Zbl

[25] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, G. I. Shlyapugin, “On the blow-up phenomena for a 1-dimensional equation of ion sound waves in a plasma: analytical and numerical investigation”, Math. Methods Appl. Sci., 41:8 (2018), 2906–2929 | DOI | MR | Zbl

[26] M. O. Korpusov, D. V. Lukyanenko, “Instantaneous blow-up versus local solvability for one problem of propagation of nonlinear waves in semiconductors”, J. Math. Anal. Appl., 459:1 (2018), 159–181 | DOI | MR | Zbl

[27] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, E. V. Yushkov, “O razrushenii reshenii odnogo polnogo nelineinogo uravneniya ionno-zvukovykh voln v plazme s nekoertsitivnymi nelineinostyami”, Izv. RAN. Ser. matem., 82:2 (2018), 43–78 | DOI | Zbl

[28] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, E. V. Yushkov, “Blow-up phenomena in the model of a space charge stratification in semiconductors: analytical and numerical analysis”, Math. Methods Appl. Sci., 40:7 (2017), 2336–2346 | DOI | MR | Zbl