A Sharp Jackson Inequality in $L_p(\mathbb R^d)$ with Dunkl Weight
Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 666-684.

Voir la notice de l'article provenant de la source Math-Net.Ru

A sharp Jackson inequality in the space $L_p(\mathbb R^d)$, $1\le p2$, with Dunkl weight is proved. The best approximation is realized by entire functions of exponential spherical type. The modulus of continuity is defined by means of a generalized shift operator bounded on $L_p$, which was constructed earlier by the authors. In the case of the unit weight, this operator coincides with the mean-value operator on the sphere.
Keywords: Dunkl transform, best approximation, generalized shift operator, modulus of continuity, Jackson inequality.
@article{MZM_2019_105_5_a2,
     author = {D. V. Gorbachev and V. I. Ivanov},
     title = {A {Sharp} {Jackson} {Inequality} in $L_p(\mathbb R^d)$ with {Dunkl} {Weight}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {666--684},
     publisher = {mathdoc},
     volume = {105},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a2/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - V. I. Ivanov
TI  - A Sharp Jackson Inequality in $L_p(\mathbb R^d)$ with Dunkl Weight
JO  - Matematičeskie zametki
PY  - 2019
SP  - 666
EP  - 684
VL  - 105
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a2/
LA  - ru
ID  - MZM_2019_105_5_a2
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A V. I. Ivanov
%T A Sharp Jackson Inequality in $L_p(\mathbb R^d)$ with Dunkl Weight
%J Matematičeskie zametki
%D 2019
%P 666-684
%V 105
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a2/
%G ru
%F MZM_2019_105_5_a2
D. V. Gorbachev; V. I. Ivanov. A Sharp Jackson Inequality in $L_p(\mathbb R^d)$ with Dunkl Weight. Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 666-684. http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a2/

[1] M. Rösler, “Dunkl operators: theory and applications”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1817, Springer, Berlin, 2002, 93–135 | DOI | MR

[2] A. V. Ivanov, V. I. Ivanov, “Teoriya Danklya i teorema Dzheksona v prostranstve $L_2(\mathbb R^d)$ so stepennym vesom”, Tr. IMM UrO RAN, 16, no. 4, 2010, 180–192

[3] D. V. Gorbachev, “Tochnoe neravenstvo Dzheksona v prostranstve $L_p$ na sfere”, Matem. zametki, 66:1 (1999), 50–62 | DOI | MR | Zbl

[4] N. I. Chernykh, “Neravenstvo Dzheksona v $L_p(0,2\pi)$ $(1\le p2)$ s tochnoi konstantoi”, Trudy Vsesoyuznoi shkoly po teorii funktsii, Tr. MIAN, 198, Nauka, M., 1992, 232–241 | MR | Zbl

[5] V. I. Ivanov, “O priblizhenii funktsii v prostranstvakh $L_p$”, Matem. zametki, 56:2 (1994), 15–40 | MR | Zbl

[6] A. V. Moskovskii, “Teoremy Dzheksona v prostranstvakh $L_p(\mathbb R^n)$ i $L_{p,\lambda}(\mathbb R_+)$”, Izv. TulGU. Ser. Matem. Mekh. Inform., 3:1 (1997), 44–70 | MR

[7] O. L. Vinogradov, “O konstante v neravenstve Dzheksona dlya prostranstv $L_p(-\infty,\infty)$”, Vestn. S.-Peterb. un-ta. Ser. 1. Matem., 1994, no. 3, 11–17 | MR | Zbl

[8] D. V. Chertova, “Otsenka sverkhu konstant Dzheksona v prostranstvakh $L_p$, $1\le p2$, na pryamoi so stepennym vesom”, Izv. TulGU. Estestvennye nauki, 2011, no. 2, 94–109

[9] V. I. Ivanov, “O tochnosti neravenstva Dzheksona v prostranstvakh $L_p$ na polupryamoi so stepennym vesom”, Matem. zametki, 98:5 (2015), 684–694 | DOI | MR | Zbl

[10] D. V. Chertova, “Teoremy Dzheksona v prostranstvakh $L_p$, $1\le p2$, s periodicheskim vesom Yakobi”, Izv. TulGU. Estestvennye nauki, 2009, no. 1, 5–27

[11] V. I. Ivanov, Yunpin Lyu, “Otsenka snizu konstant Dzheksona v prostranstvakh $L_p$, $1\le p2$, s periodicheskim vesom Yakobi”, Izv. TulGU. Estestvennye nauki, 2011, no. 2, 59–70

[12] F. Dai, Y. Xu, Approximation Theory and Harmonic Analysis on Spheres and Balls, Springer, New York, 2013 | MR | Zbl

[13] R. A. Veprintsev, “Neravenstvo Dzheksona v prostranstvakh $L_p$ na sfere s vesom Danklya”, Izv. TulGU. Estestvennye nauki, 2013, no. 3, 27–49

[14] R. A. Veprintsev, “Otsenka snizu konstanty Dzheksona v prostranstvakh $L_p$ na sfere s vesom Danklya, svyazannym s gruppoi diedra”, Chebyshevskii sb., 16:3 (2015), 95–123

[15] R. A. Veprintsev, “Otsenka snizu konstanty Dzheksona v prostranstvakh $L_p$ na sfere s vesom Danklya, svyazannym s abelevoi gruppoi $\mathbb Z^d_2$”, Izv. TulGU. Estestvennye nauki, 2015, no. 3, 5–27

[16] D. V. Gorbachev, V. I. Ivanov, S. Yu. Tikhonov, “Positive $L_p$-bounded Dunkl-type generalized translation operator and its applications”, Constr. Approx., 2018 | DOI

[17] A. V. Ivanov, V. I. Ivanov, “Optimalnye argumenty v neravenstve Dzheksona v prostranstve $L_2(\mathbb{R}^d)$ so stepennym vesom”, Matem. zametki, 94:3 (2013), 338–348 | DOI | MR | Zbl

[18] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, Vol. II, MacGraw-Hill, New York, 1953 | MR

[19] S. S. Platonov, “Garmonicheskii analiz Besselya i priblizhenie funktsii na polupryamoi”, Izv. RAN. Ser. matem., 71:5 (2007), 149–196 | DOI | MR | Zbl

[20] M. Rösler, “Generalized Hermite polynomials and the heat equation for Dunkl operators”, Comm. Math. Phys., 192:3 (1998), 519–542 | DOI | MR | Zbl

[21] M. Rösler, “A positive radial product formula for the Dunkl kernel”, Trans. Amer. Math. Soc., 355:6 (2003), 2413–2438 | DOI | MR | Zbl

[22] S. Thangavelu, Y. Xu, “Convolution operator and maximal function for Dunkl transform”, J. Anal. Math., 97 (2005), 25–55 | DOI | MR

[23] D. V. Gorbachev, “Ekstremalnye zadachi dlya tselykh funktsii eksponentsialnogo sfericheskogo tipa”, Matem. zametki, 68:2 (2000), 179–187 | DOI | MR | Zbl

[24] D. V. Gorbachev, V. I. Ivanov, “Ekstremalnaya zadacha Bomana dlya preobrazovaniya Danklya”, Tr. IMM UrO RAN, 21, no. 4, 2015, 115–123 | MR