A Sharp Jackson Inequality in $L_p(\mathbb R^d)$ with Dunkl Weight
Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 666-684

Voir la notice de l'article provenant de la source Math-Net.Ru

A sharp Jackson inequality in the space $L_p(\mathbb R^d)$, $1\le p2$, with Dunkl weight is proved. The best approximation is realized by entire functions of exponential spherical type. The modulus of continuity is defined by means of a generalized shift operator bounded on $L_p$, which was constructed earlier by the authors. In the case of the unit weight, this operator coincides with the mean-value operator on the sphere.
Keywords: Dunkl transform, best approximation, generalized shift operator, modulus of continuity, Jackson inequality.
@article{MZM_2019_105_5_a2,
     author = {D. V. Gorbachev and V. I. Ivanov},
     title = {A {Sharp} {Jackson} {Inequality} in $L_p(\mathbb R^d)$ with {Dunkl} {Weight}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {666--684},
     publisher = {mathdoc},
     volume = {105},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a2/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - V. I. Ivanov
TI  - A Sharp Jackson Inequality in $L_p(\mathbb R^d)$ with Dunkl Weight
JO  - Matematičeskie zametki
PY  - 2019
SP  - 666
EP  - 684
VL  - 105
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a2/
LA  - ru
ID  - MZM_2019_105_5_a2
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A V. I. Ivanov
%T A Sharp Jackson Inequality in $L_p(\mathbb R^d)$ with Dunkl Weight
%J Matematičeskie zametki
%D 2019
%P 666-684
%V 105
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a2/
%G ru
%F MZM_2019_105_5_a2
D. V. Gorbachev; V. I. Ivanov. A Sharp Jackson Inequality in $L_p(\mathbb R^d)$ with Dunkl Weight. Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 666-684. http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a2/