On the Completeness of a Part of Root Vectors for a Class of Third-Order Quasi-Elliptic Operator Pencils
Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 801-804.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Hilbert space, operator pencil, operator differential equation, completeness of a system of root vectors.
@article{MZM_2019_105_5_a13,
     author = {S. S. Mirzoyev and A. T. Gazilova},
     title = {On the {Completeness} of a {Part} of {Root} {Vectors} for a {Class} of {Third-Order} {Quasi-Elliptic} {Operator} {Pencils}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {801--804},
     publisher = {mathdoc},
     volume = {105},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a13/}
}
TY  - JOUR
AU  - S. S. Mirzoyev
AU  - A. T. Gazilova
TI  - On the Completeness of a Part of Root Vectors for a Class of Third-Order Quasi-Elliptic Operator Pencils
JO  - Matematičeskie zametki
PY  - 2019
SP  - 801
EP  - 804
VL  - 105
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a13/
LA  - ru
ID  - MZM_2019_105_5_a13
ER  - 
%0 Journal Article
%A S. S. Mirzoyev
%A A. T. Gazilova
%T On the Completeness of a Part of Root Vectors for a Class of Third-Order Quasi-Elliptic Operator Pencils
%J Matematičeskie zametki
%D 2019
%P 801-804
%V 105
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a13/
%G ru
%F MZM_2019_105_5_a13
S. S. Mirzoyev; A. T. Gazilova. On the Completeness of a Part of Root Vectors for a Class of Third-Order Quasi-Elliptic Operator Pencils. Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 801-804. http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a13/

[1] A. A. Shkalikov, Tr. sem. im. I.G.Petrovskogo, 14 (1989), 140–224 | Zbl

[2] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, T. 1, Mir, M., 1971 | MR | Zbl

[3] M. V. Keldysh, UMN, 26:4 (160) (1971), 15–41 | MR | Zbl

[4] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl

[5] A. A. Shkalikov, UMN, 71:5 (431) (2016), 113–174 | DOI | MR | Zbl

[6] M. G. Gasymov, Dokl. AN SSSR, 199:4 (1971), 747–750 | MR | Zbl

[7] G. V. Radzievskii, UMN, 37:2 (224) (1982), 81–145 | MR | Zbl

[8] S. S. Mirzoev, Funkts. analiz i ego pril., 17:2 (1983), 84–85 | MR | Zbl

[9] S. F. Babaeva, S. S. Mirzoev, Matem. zametki, 102:1 (2017), 148–151 | DOI | MR | Zbl

[10] S. S. Mirzoev, H. I. Zamanov, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 43:2 (2017), 188–196 | MR

[11] A. R. Aliev, A. L. Elbably, Bound. Value Probl., 2013 (2013), 140 | DOI | MR | Zbl