Asymptotics, Related to Billiards with Semi-Rigid Walls, of Eigenfunctions of the $\nabla D(x)\nabla$ Operator in Dimension~2 and Trapped Coastal Waves
Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 792-797.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: asymptotic eigenfunction, billiard with semi-rigid walls, trapped coastal waves on shallow water, stationary problem.
@article{MZM_2019_105_5_a11,
     author = {A. Yu. Anikin and S. Yu. Dobrokhotov and V. E. Nazaikinskii and A. V. Tsvetkova},
     title = {Asymptotics, {Related} to {Billiards} with {Semi-Rigid} {Walls,} of {Eigenfunctions} of the $\nabla D(x)\nabla$ {Operator} in {Dimension~2} and {Trapped} {Coastal} {Waves}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {792--797},
     publisher = {mathdoc},
     volume = {105},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a11/}
}
TY  - JOUR
AU  - A. Yu. Anikin
AU  - S. Yu. Dobrokhotov
AU  - V. E. Nazaikinskii
AU  - A. V. Tsvetkova
TI  - Asymptotics, Related to Billiards with Semi-Rigid Walls, of Eigenfunctions of the $\nabla D(x)\nabla$ Operator in Dimension~2 and Trapped Coastal Waves
JO  - Matematičeskie zametki
PY  - 2019
SP  - 792
EP  - 797
VL  - 105
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a11/
LA  - ru
ID  - MZM_2019_105_5_a11
ER  - 
%0 Journal Article
%A A. Yu. Anikin
%A S. Yu. Dobrokhotov
%A V. E. Nazaikinskii
%A A. V. Tsvetkova
%T Asymptotics, Related to Billiards with Semi-Rigid Walls, of Eigenfunctions of the $\nabla D(x)\nabla$ Operator in Dimension~2 and Trapped Coastal Waves
%J Matematičeskie zametki
%D 2019
%P 792-797
%V 105
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a11/
%G ru
%F MZM_2019_105_5_a11
A. Yu. Anikin; S. Yu. Dobrokhotov; V. E. Nazaikinskii; A. V. Tsvetkova. Asymptotics, Related to Billiards with Semi-Rigid Walls, of Eigenfunctions of the $\nabla D(x)\nabla$ Operator in Dimension~2 and Trapped Coastal Waves. Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 792-797. http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a11/

[1] F. Ursell, Proc. Roy. Soc. London. Ser. A, A214 \year 1952, 79–97 | MR | Zbl

[2] A. I. Komech, A. E. Merzon, P. N. Zhevandrov, Russ. J. Math. Phys., 4:4 (1997), 457–486 | MR

[3] A. E. Merzon, P. N. Zhevandrov, SIAM J. Appl. Math., 59:2 (1998), 529–546 | DOI | MR

[4] S. Yu. Dobrokhotov, Dokl. AN SSSR, 289:3 (1986), 575–579 | MR

[5] S. Yu. Dobrokhotov, P. N. Zhevandrov, K. V. Simonov, “Volny Stoksa v zamknutykh basseinakh”, Teoreticheskie i eksperimentalnye issledovaniya dlinnovolnovykh protsessov, DVNTs AN SSSR, Vladivostok, 1985, 13–19

[6] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980 | MR | Zbl

[7] O. A. Oleinik, E. V. Radkevich, Itogi nauki. Ser. Matematika. Mat. anal. 1969, VINITI, M., 1971, 7–252 | MR | Zbl

[8] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[9] V. F. Lazutkin, KAM Theory and Semiclassical Approximations to Eigenfunctions, Springer-Verlag, Berlin, 1993 | MR | Zbl

[10] V. S. Matveev, Matem. zametki, 64:3 (1998), 414–422 | DOI | MR | Zbl

[11] V. E. Nazaikinskii, Matem. zametki, 92:1 (2012), 153–156 | DOI | MR | Zbl

[12] V. E. Nazaikinskii, Matem. zametki, 96:2 (2014), 261–276 | DOI | MR | Zbl

[13] S. Yu. Dobrokhotov, V. E. Nazaikinskii, Matem. zametki, 100:5 (2016), 710–731 | DOI | MR | Zbl

[14] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, Matem. zametki, 104:4 (2018), 483–504 | DOI | Zbl