Asymptotics of the Eigenvalues and Eigenfunctions of a Thin Square Dirichlet Lattice with a Curved Ligament
Matematičeskie zametki, Tome 105 (2019) no. 4, pp. 564-588.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of the Dirichlet problem on the planar square lattice of thin quantum waveguides has a band-gap structure with short spectral bands separated by wide spectral gaps. The curving of at least one of the ligaments of the lattice generates points of the discrete spectrum inside gaps. A complete asymptotic series for the eigenvalues and eigenfunctions are constructed and justified; those for the eigenfunctions exhibit a remarkable behavior imitating the rapid decay of the trapped modes: the terms of the series have compact supports that expand unboundedly as the number of the term increases.
Keywords: lattice of thin quantum waveguides, essential and discrete spectra, gaps, eigenvalues, asymptotic expansion.
Mots-clés : perturbation
@article{MZM_2019_105_4_a7,
     author = {S. A. Nazarov},
     title = {Asymptotics of the {Eigenvalues} and {Eigenfunctions} of a {Thin} {Square} {Dirichlet} {Lattice} with a {Curved} {Ligament}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {564--588},
     publisher = {mathdoc},
     volume = {105},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a7/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Asymptotics of the Eigenvalues and Eigenfunctions of a Thin Square Dirichlet Lattice with a Curved Ligament
JO  - Matematičeskie zametki
PY  - 2019
SP  - 564
EP  - 588
VL  - 105
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a7/
LA  - ru
ID  - MZM_2019_105_4_a7
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Asymptotics of the Eigenvalues and Eigenfunctions of a Thin Square Dirichlet Lattice with a Curved Ligament
%J Matematičeskie zametki
%D 2019
%P 564-588
%V 105
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a7/
%G ru
%F MZM_2019_105_4_a7
S. A. Nazarov. Asymptotics of the Eigenvalues and Eigenfunctions of a Thin Square Dirichlet Lattice with a Curved Ligament. Matematičeskie zametki, Tome 105 (2019) no. 4, pp. 564-588. http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a7/

[1] P. A. Kuchment, “Teoriya Floke dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, UMN, 37:4 (226) (1982), 3–52 | MR | Zbl

[2] M. M. Skriganov, “Geometricheskie i arifmeticheskie metody v spektralnoi teorii mnogomernykh periodicheskikh operatorov”, Tr. MIAN SSSR, 171, 1985, 3–122 | MR | Zbl

[3] P. Kuchment, Floquet Theory for Partial Differential Equations, Oper. Theory Adv. Appl., 60, Birchäuser, Basel, 1993 | MR | Zbl

[4] C. A. Nazarov, “Spektr pryamougolnykh reshetok kvantovykh volnovodov”, Izv. RAN. Ser. matem., 81:1 (2017), 31–92 | DOI | MR | Zbl

[5] R. L. Shult, D. G. Ravenhall, H. D. Wyld, “Quantum bound states in a classically unbound system of crossed wires”, Phys. Rev. B, 39 (1989), 5476–5479 | DOI

[6] Y. Avishai, D. Bessis, B. G. Giraud, G. Mantica, “Quantum bound states in open geometries”, Phys. Rev. B, 440 (1991), 8028–8034 | DOI

[7] C. A. Nazarov, “Diskretnyi spektr krestoobraznykh kvantovykh volnovodov”, Problemy matem. analiza, 73 (2013), 101–127 | MR

[8] A. Figotin, A. Klein, “Midgap defect modes in dielectric and acoustic media”, SIAM J. Appl. Math., 58:6 (1998), 1748–1773 | DOI | MR | Zbl

[9] H. Ammari, F. Santosa, “Guided waves in a photonic bandgap structure with a line defect”, SIAM J. Appl. Math., 64:6 (2004), 2018–2033 | MR | Zbl

[10] D. Miao, F. Ma, “On guided waves created by line defects”, J. Stat. Phys., 130:6 (2008), 1197–1215 | DOI | MR | Zbl

[11] B. M. Brown, V. Hoang, M. Plum, I. Wood, “Spectrum created by line defects in periodic structures”, Math. Nachr., 287:17-18 (2014), 1972–1985 | DOI | MR | Zbl

[12] C. A. Nazarov, “Ogranichennye resheniya v $\mathrm{T}$-obraznom volnovode i spektralnye svoistva lestnitsy Dirikhle”, Zh. vychisl. matem. i matem. fiz., 54:8 (2014), 1299–1318 | DOI | MR | Zbl

[13] B. Delourme, S. Fliss, P. Joly, E. Vasilevskaya, “Trapped modes in thin and infinite ladder-like domains. Part 1: Existence results”, Asymptot. Anal., 103:3 (2017), 103–134 | DOI | MR | Zbl

[14] C. A. Nazarov, “Pochti stoyachie volny v periodicheskom volnovode s rezonatorom i okoloporogovye sobstvennye chisla”, Algebra i analiz, 28:3 (2016), 111–160 | MR

[15] S. Molchanov, B. Vainberg, “Scattering solutions in networks of thin fibers: small diameter asymptotics”, Comm. Math. Phys., 273:2 (2007), 533–559 | DOI | MR | Zbl

[16] S. A. Nazarov, B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, De Gruyter Exp. Math., 13, Walter de Gruyter, Berlin, 1994 | MR

[17] C. A. Nazarov, “Usloviya sopryazheniya v odnomernoi modeli pryamougolnoi reshetki tonkikh kvantovykh volnovodov”, Problemy matem. analiza, 87:3 (2018), 153–173

[18] D. Grieser, “Spectra of graph neighborhoods and scattering”, Proc. London Math. Soc. (3), 97:3 (2009), 718–752 | DOI | MR

[19] L. Pauling, “The diamagnetic anisotropy of aromatic molecules”, J. Chem. Phys., 4 (1936), 672–678 | DOI

[20] M. D. Van Daik, Metody vozmuschenii v mekhanike zhidkostei, Mir, M., 1967

[21] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR | Zbl

[22] V. Maz'ya, S. Nazarov, B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Vol. I, II, Birkhäuser, Basel, 2000 | MR

[23] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (77) (1957), 3–122 | MR | Zbl

[24] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980

[25] O. Post, “Spectral Analysis on Graph-Like Spaces”, Lecture Notes in Math., 2039, Springer, Heidelberg, 2012 | DOI | MR | Zbl

[26] C. A. Nazarov, “Diskretnyi spektr kolenchatykh, razvetvlyayuschikhsya i periodicheskikh volnovodov”, Algebra i analiz, 23:2 (2011), 206–247 | MR | Zbl

[27] C. A. Nazarov, “Otkrytye volnovody v tonkoi reshetke Dirikhle. II. Lokalizovannye volny i usloviya izlucheniya”, Zh. vychisl. matem. i matem. fiz., 57:2 (2017), 237–254 | DOI | Zbl