Asymptotics of the Eigenvalues and Eigenfunctions of a Thin Square Dirichlet Lattice with a Curved Ligament
Matematičeskie zametki, Tome 105 (2019) no. 4, pp. 564-588
Voir la notice de l'article provenant de la source Math-Net.Ru
The spectrum of the Dirichlet problem on the planar square lattice of thin quantum waveguides has a band-gap structure with short spectral bands separated by wide spectral gaps. The curving of at least one of the ligaments of the lattice generates points of the discrete spectrum inside gaps. A complete asymptotic series for the eigenvalues and eigenfunctions are constructed and justified; those for the eigenfunctions exhibit a remarkable behavior imitating the rapid decay of the trapped modes: the terms of the series have compact supports that expand unboundedly as the number of the term increases.
Keywords:
lattice of thin quantum waveguides, essential and discrete spectra, gaps, eigenvalues, asymptotic expansion.
Mots-clés : perturbation
Mots-clés : perturbation
@article{MZM_2019_105_4_a7,
author = {S. A. Nazarov},
title = {Asymptotics of the {Eigenvalues} and {Eigenfunctions} of a {Thin} {Square} {Dirichlet} {Lattice} with a {Curved} {Ligament}},
journal = {Matemati\v{c}eskie zametki},
pages = {564--588},
publisher = {mathdoc},
volume = {105},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a7/}
}
TY - JOUR AU - S. A. Nazarov TI - Asymptotics of the Eigenvalues and Eigenfunctions of a Thin Square Dirichlet Lattice with a Curved Ligament JO - Matematičeskie zametki PY - 2019 SP - 564 EP - 588 VL - 105 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a7/ LA - ru ID - MZM_2019_105_4_a7 ER -
S. A. Nazarov. Asymptotics of the Eigenvalues and Eigenfunctions of a Thin Square Dirichlet Lattice with a Curved Ligament. Matematičeskie zametki, Tome 105 (2019) no. 4, pp. 564-588. http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a7/